Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC advancing state-of-the-art in FinFETs

14.06.2007
At this week’s VLSI Symposium, IMEC presents significant progress in the manufacturability, circuit performance and reliability of FinFETs. The results advance FinFET process technology towards being a candidate for the 32nm node and beyond.

FinFETs are a promising approach to address short-channel effects and leakage issues when scaling CMOS towards the 32nm node and beyond. Doping fluctuations in nano-scale planar devices are one of the several concerns in further scaling, while FinFETs have the potential of being able to operate without channel dopants. IMEC has improved its process to yield reproducible FinFETs with fin widths down to 5nm and high aspect ratio using 193nm immersion lithography and dry etching. By using these ultra-thin body devices, the need of channel doping is eliminated. This results in reduced parametric spread due to dopant fluctuations together with reduced junction leakage.

Analyzing various circuit topologies, IMEC demonstrates experimentally that the performance of FinFET circuits is superior to bulk CMOS circuits and satisfies future digital library requirements. A ring oscillator has been realized with metal gates and un-doped fins showing an inverter delay of 13.9ps at a 1.0V supply voltage and 1.9nA off current. This best low-power performance of FinFETs ever reported results from the undoped channels and improved subthreshold characteristics. Next to the excellent inverter delay, FinFETs provide an extra performance benefit due to their excellent stacked device performance. They allow realizing higher stack heights whereby the same functionality can be implemented with less logic gates resulting in additional area reduction. The potential of FinFETs for large-scale integration has also been demonstrated. To this end, SRAM cells and data path demonstrators with low standby current and good low operating power performance were realized.

The reliability characteristics, both NBTI (negative bias temperature instability) and PBTI (positive bias temperature instability), of the FinFETs have been significantly improved by dielectric passivation based on introducing fluorine into the metal/Hf-based gate stack during gate etching. To this end, IMEC developed a novel, effective and cost-efficient method that requires no extra processing step.

“Although the performance benefits of FinFETs have been recognized for many years, several bottlenecks have to be overcome to bring FinFET technology to manufacturing. These advances have reduced the gap for FinFETs to become a manufacturing technology,” said Luc Van den hove, COO IMEC.

These results were obtained in collaboration with IMEC’s (sub-)32nm CMOS research partners: Infineon, Qimonda, Intel, Micron, NXP, Panasonic, Samsung, STMicroelectronics, Texas Instruments, TSMC and Elpida.

Katrien Marent | alfa
Further information:
http://www.imec.be

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>