Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC advancing state-of-the-art in FinFETs

14.06.2007
At this week’s VLSI Symposium, IMEC presents significant progress in the manufacturability, circuit performance and reliability of FinFETs. The results advance FinFET process technology towards being a candidate for the 32nm node and beyond.

FinFETs are a promising approach to address short-channel effects and leakage issues when scaling CMOS towards the 32nm node and beyond. Doping fluctuations in nano-scale planar devices are one of the several concerns in further scaling, while FinFETs have the potential of being able to operate without channel dopants. IMEC has improved its process to yield reproducible FinFETs with fin widths down to 5nm and high aspect ratio using 193nm immersion lithography and dry etching. By using these ultra-thin body devices, the need of channel doping is eliminated. This results in reduced parametric spread due to dopant fluctuations together with reduced junction leakage.

Analyzing various circuit topologies, IMEC demonstrates experimentally that the performance of FinFET circuits is superior to bulk CMOS circuits and satisfies future digital library requirements. A ring oscillator has been realized with metal gates and un-doped fins showing an inverter delay of 13.9ps at a 1.0V supply voltage and 1.9nA off current. This best low-power performance of FinFETs ever reported results from the undoped channels and improved subthreshold characteristics. Next to the excellent inverter delay, FinFETs provide an extra performance benefit due to their excellent stacked device performance. They allow realizing higher stack heights whereby the same functionality can be implemented with less logic gates resulting in additional area reduction. The potential of FinFETs for large-scale integration has also been demonstrated. To this end, SRAM cells and data path demonstrators with low standby current and good low operating power performance were realized.

The reliability characteristics, both NBTI (negative bias temperature instability) and PBTI (positive bias temperature instability), of the FinFETs have been significantly improved by dielectric passivation based on introducing fluorine into the metal/Hf-based gate stack during gate etching. To this end, IMEC developed a novel, effective and cost-efficient method that requires no extra processing step.

“Although the performance benefits of FinFETs have been recognized for many years, several bottlenecks have to be overcome to bring FinFET technology to manufacturing. These advances have reduced the gap for FinFETs to become a manufacturing technology,” said Luc Van den hove, COO IMEC.

These results were obtained in collaboration with IMEC’s (sub-)32nm CMOS research partners: Infineon, Qimonda, Intel, Micron, NXP, Panasonic, Samsung, STMicroelectronics, Texas Instruments, TSMC and Elpida.

Katrien Marent | alfa
Further information:
http://www.imec.be

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>