Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound upgrade produces images that work like 3-D movies

26.04.2007
Parents-to-be might soon don 3-D glasses in the ultrasound lab to see their developing fetuses in the womb "in living 3-D, just like at the IMAX movies," according to researchers at Duke University's Pratt School of Engineering.

The same Duke team that first developed real-time, three-dimensional ultrasound imaging says it has now modified the commercial version of the scanner to produce an even more realistic perception of depth. Paired images seem to pop out of the screen when viewed with the special glasses.

The researchers created an updated version of the image-viewing software found on clinical ultrasound scanners, making it possible to achieve a stereo display with no additional hardware.

"To our knowledge, this is the first time it's been made possible to display real-time stereo image pairs on a clinical scanner," said Stephen Smith, a professor of biomedical engineering at Duke. "We believe all 3-D scanners could be modified in this way with only minor software changes."

The new imaging capability can improve the early diagnosis of certain kinds of birth defects of the face and skull and improve surgeons' depth perception during ultrasound-guided medical procedures, including tumor biopsies and robot-assisted surgeries done through tiny "keyhole" incisions.

The Duke team, which also includes Joanna Noble, an undergraduate student, and Matthew Fronheiser, a graduate student in Smith's laboratory, reported the findings in an issue of the journal Ultrasonic Imaging dated July 2006, but published in April 2007. The research was supported by the National Institutes of Health.

Human depth perception is largely the result of stereo vision -- the slightly different perspectives of the same scene that are observed by the left and right eyes, Smith said. The brain processes the information to produce a sense of depth, a phenomenon that can't be achieved when viewing a single, flat image.

Stereoscopic images solve that problem by taking two "snapshots" of the same object from slightly different angles, mimicking the normal difference between left and right eye views.

Special glasses or goggles can then be used to fuse the two images into one, gaining a 3-D effect. This principle lies behind 3-D movies and the familiar Fisher Price View-Master toy. With practice, some people can "defocus" their eyes and fuse the paired images without the aid of any special viewing device. (Find out how at http://en.wikipedia.org/wiki/Stereoscopy.)

To demonstrate the new capability, the researchers first generated stereo ultrasound images of a small metal cage. They then advanced to ultrasound images in living animals of a heart valve and blood vessels and needle biopsies of the animals' brains and esophagi.

The researchers have since recorded ultrasound images of a model human fetus that is traditionally used in the testing of fetal ultrasound imaging devices. (Watch the video, including paired images of both the cage and model fetus, at http://youtube.com/watch?v=4VSRlH01mzg. See if you can fuse them without goggles.)

"Thousands of 3-D ultrasound systems in clinics could be upgraded with such new software, and stereoscopic goggles could be issued to them as well," Smith said. "Keepsake DVDs of the fetal exam could also be viewed at home in 3-D stereo."

The goggles would soon become obsolete, he added. New monitors capable of fusing stereo 3-D images without them are now in development.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu
http://en.wikipedia.org/wiki/Stereoscopy
http://youtube.com/watch?v=4VSRlH01mzg

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>