Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics engineer predicts fantastic plastic future

29.03.2007
An engineer from The University of Manchester who is pushing boundaries in the field of nanotechnology has been recognised with a prestigious award.

Professor Aimin Song from the School of Electronic and Electrical Engineering (EEE) is one of only eight people to receive a 2007 Brian Mercer Feasibility Award from the Royal Society.

The £30,000 award will assist Professor Song in his efforts to push the processing speed of plastic components way beyond what has previously been achieved.

Plastic electronics arguably came to real prominence after three scientists won the 2000 Nobel Prize for their contribution to the discovery and development of conductive polymer plastics.

The technology opens up the possibility for very flexible, high-tech devices – such as information screens that you can roll up and put in your pocket – being developed.

But while the rise of plastic electronics has brought potential, it has also brought some problems; conventional multi-layered transistors made from polymer plastics offer relatively slow conductivity speeds and involve a complex and costly manufacturing process.

With support and funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Song has pioneered a way to make single-layered planar plastic transistors and diodes using a fast and simple printing technique.

Professor Song is confident he can push the speed of his organic plastic semiconductors to around 100Mhz – way beyond the 20 Megahertz (Mhz) he has so far achieved.

In the past, multi-layered transistors made from plastic have generally worked at Kilohertz (KHz) speeds or below.

Plastic components such as semiconductors and diodes could be used to create drivers for flexible displays, Radio Frequency Identification Tags (RFIDs) and intelligent disposable sensors.

Professor Song believes this could ultimately lead to the production of information displays that can be rolled up and put into your pocket, and also changeable electronic wallpaper.

Other potential applications include intelligent tickets for public transport systems or road charging schemes and electronic stamps for letters and packages.

Due to the high level of commercial interest in Professor Song’s breakthrough technology, he has formed a company called Plastic ePrint Ltd with support form The University of Manchester Intellectual Property Ltd (UMIP).

The firm is now seeking venture capital funding and is also working on creating demonstration versions of plastic radio frequency (RF) smart cards and developing plastic components for use in flexible displays.

Professor Song, who works in the Microelectronics and Nanostructures group at The University, said: “In the film The Graduate, the character played by Dustin Hoffman is famously advised that the future is plastics. From many points of view, this prediction is quite true and I think that plastics will bring a revolution for the second time in history.

“The components we have developed are simpler and potentially much cheaper to produce and much faster than previous organic electronic devices.

“These advantages come from the simplicity of the single layer, planar structures, rather than the multi-layer vertical structures of conventional semiconductor devices.

“There is still much work to be done, and this prestigious award will help us continue to drive our work forward. However, I am confident the development of plastic electronics will lead to a new-generation of exciting products coming into our everyday lives.”

Dr Richard Price from UMIP said: “Professor Song’s technology has the potential to be at the cornerstone of the plastic electronics revolution – the nanodevices are so simple, yet extremely elegant.

“Initial applications will have relatively modest functionality in comparison to today’s silicon technology, but as materials and processes continue to develop there should be no reason why high-performance products cannot be realised in the future.”

Professor Song is one of two academics from The University of Manchester to receive a Brian Mercer Feasibility Award this year.

Professor Andre Geim from The School of Physics and Astronomy also received the honour for his discovery and development of two-dimensional materials – including graphene – that are only one atom thick.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps
http://www.royalsoc.ac.uk

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>