Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GIOVE-A navigation signal available to users

05.03.2007
The GIOVE-A Signal-in-Space Interface Control Document, the document that gives the technical details of the signals transmitted by the GIOVE-A satellite, has been released. This will allow receiver manufacturers and research institutions to use a real signal for their research and development.

Following the launch of GIOVE-A on 28 December 2005 from the Baikonur Cosmodrome and the transmission of the first Galileo signals from medium Earth orbit on 12 January 2006, ESA and Surrey Satellite Technology Limited (SSTL – United Kingdom) have completed the GIOVE-A in-orbit validation activities. The GIOVE-A signal validation has been accomplished through a network of 13 Galileo Experimental Sensor Stations (GESS), deployed world wide, and a GIOVE Processing Centre which computes precise orbits and clock timings for the GIOVE satellites, based on the measurements made by the GESS and satellite laser ranging stations.

The GIOVE-A Signal-in-Space Interface Control Document (SIS-ICD) is the key document that will allow any user to build a receiver able to track GIOVE-A signals, interpret the navigation message and compute the distance between the satellite and the receiver. Following the successfully in-orbit validation mission, ESA has decided to release the SIS-ICD to the public to allow receiver manufacturers and research centres to benefit from experiments with a real Signal-in-Space for research and development purposes.

This is possible since the nominal GIOVE-A navigation Signal-in–Space (SIS) is fully representative of the future Galileo navigation signals, on all three Galileo frequency bands, even though GIOVE-A uses specific spreading codes that are different from the nominal codes of the final Galileo constellation to allow unambiguous identification of the spacecraft. These codes are described in the GIOVE-A public document and with knowledge of them the GIOVE-A signals can be used for code and carrier phase tracking in precisely the same way the future Galileo signals will be used. All GIOVE-A signal spectra are identical to the future Galileo navigation SIS spectra.

The navigation data symbol rates are identical with the nominal Galileo data rates for all public signals, and the same principles as in the final Galileo navigation signal are used for message encoding. The navigation message structure of GIOVE-A is different from the future Galileo navigation signal, but the low level elements of the message differ only in minor details. The content of the GIOVE-A navigation message is complete with all ingredients such as, for example, ephemeris and clock correction, that are needed for pseudo-range calculation and further positioning processing, thus leading to a full set of navigation signals.

The time for simulation is over, so the ESA Galileo project team is putting at the disposal of the user community the information needed to support the validation of demanding Galileo user applications with a real satellite.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEM4EDN0LYE_index_0.html

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>