Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GIOVE-A navigation signal available to users

05.03.2007
The GIOVE-A Signal-in-Space Interface Control Document, the document that gives the technical details of the signals transmitted by the GIOVE-A satellite, has been released. This will allow receiver manufacturers and research institutions to use a real signal for their research and development.

Following the launch of GIOVE-A on 28 December 2005 from the Baikonur Cosmodrome and the transmission of the first Galileo signals from medium Earth orbit on 12 January 2006, ESA and Surrey Satellite Technology Limited (SSTL – United Kingdom) have completed the GIOVE-A in-orbit validation activities. The GIOVE-A signal validation has been accomplished through a network of 13 Galileo Experimental Sensor Stations (GESS), deployed world wide, and a GIOVE Processing Centre which computes precise orbits and clock timings for the GIOVE satellites, based on the measurements made by the GESS and satellite laser ranging stations.

The GIOVE-A Signal-in-Space Interface Control Document (SIS-ICD) is the key document that will allow any user to build a receiver able to track GIOVE-A signals, interpret the navigation message and compute the distance between the satellite and the receiver. Following the successfully in-orbit validation mission, ESA has decided to release the SIS-ICD to the public to allow receiver manufacturers and research centres to benefit from experiments with a real Signal-in-Space for research and development purposes.

This is possible since the nominal GIOVE-A navigation Signal-in–Space (SIS) is fully representative of the future Galileo navigation signals, on all three Galileo frequency bands, even though GIOVE-A uses specific spreading codes that are different from the nominal codes of the final Galileo constellation to allow unambiguous identification of the spacecraft. These codes are described in the GIOVE-A public document and with knowledge of them the GIOVE-A signals can be used for code and carrier phase tracking in precisely the same way the future Galileo signals will be used. All GIOVE-A signal spectra are identical to the future Galileo navigation SIS spectra.

The navigation data symbol rates are identical with the nominal Galileo data rates for all public signals, and the same principles as in the final Galileo navigation signal are used for message encoding. The navigation message structure of GIOVE-A is different from the future Galileo navigation signal, but the low level elements of the message differ only in minor details. The content of the GIOVE-A navigation message is complete with all ingredients such as, for example, ephemeris and clock correction, that are needed for pseudo-range calculation and further positioning processing, thus leading to a full set of navigation signals.

The time for simulation is over, so the ESA Galileo project team is putting at the disposal of the user community the information needed to support the validation of demanding Galileo user applications with a real satellite.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEM4EDN0LYE_index_0.html

More articles from Information Technology:

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>