Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GIOVE-A navigation signal available to users

05.03.2007
The GIOVE-A Signal-in-Space Interface Control Document, the document that gives the technical details of the signals transmitted by the GIOVE-A satellite, has been released. This will allow receiver manufacturers and research institutions to use a real signal for their research and development.

Following the launch of GIOVE-A on 28 December 2005 from the Baikonur Cosmodrome and the transmission of the first Galileo signals from medium Earth orbit on 12 January 2006, ESA and Surrey Satellite Technology Limited (SSTL – United Kingdom) have completed the GIOVE-A in-orbit validation activities. The GIOVE-A signal validation has been accomplished through a network of 13 Galileo Experimental Sensor Stations (GESS), deployed world wide, and a GIOVE Processing Centre which computes precise orbits and clock timings for the GIOVE satellites, based on the measurements made by the GESS and satellite laser ranging stations.

The GIOVE-A Signal-in-Space Interface Control Document (SIS-ICD) is the key document that will allow any user to build a receiver able to track GIOVE-A signals, interpret the navigation message and compute the distance between the satellite and the receiver. Following the successfully in-orbit validation mission, ESA has decided to release the SIS-ICD to the public to allow receiver manufacturers and research centres to benefit from experiments with a real Signal-in-Space for research and development purposes.

This is possible since the nominal GIOVE-A navigation Signal-in–Space (SIS) is fully representative of the future Galileo navigation signals, on all three Galileo frequency bands, even though GIOVE-A uses specific spreading codes that are different from the nominal codes of the final Galileo constellation to allow unambiguous identification of the spacecraft. These codes are described in the GIOVE-A public document and with knowledge of them the GIOVE-A signals can be used for code and carrier phase tracking in precisely the same way the future Galileo signals will be used. All GIOVE-A signal spectra are identical to the future Galileo navigation SIS spectra.

The navigation data symbol rates are identical with the nominal Galileo data rates for all public signals, and the same principles as in the final Galileo navigation signal are used for message encoding. The navigation message structure of GIOVE-A is different from the future Galileo navigation signal, but the low level elements of the message differ only in minor details. The content of the GIOVE-A navigation message is complete with all ingredients such as, for example, ephemeris and clock correction, that are needed for pseudo-range calculation and further positioning processing, thus leading to a full set of navigation signals.

The time for simulation is over, so the ESA Galileo project team is putting at the disposal of the user community the information needed to support the validation of demanding Galileo user applications with a real satellite.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEM4EDN0LYE_index_0.html

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>