Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Portsmouth develops new aircraft component testing method to make air travel safer and cheaper

09.01.2007
Experts at the University of Portsmouth are developing a new method for testing critical components of aircraft - a scientific breakthrough that will make air travel safer and cheaper.

Professor Jie Tong, an aerospace mechanics expert from the University’s Department of Mechanical and Design Engineering, is leading the international team of experts with funding from the Royal Society.

The team’s mission is to develop state-of-the-art computer modelling programs that will reveal how aircraft components react under the stresses of flying.

The existing life prediction method involves expensive mechanical testing - one of the reasons why it costs so much to buy a plane ticket.

In particular, the researchers are looking at small cracks inherent in metal components in aircraft engines. These cracks grow and change over time. This process is known as metal fatigue or ‘fatigue crack growth’.

Metal fatigue in aeroplane engines is not a common cause of crashes - pilot error is a larger one - but it has resulted in a number of incidents in the past, most notably the 1989 United Airlines crash in the United States when a passenger plane cartwheeled across the tarmac while trying to land.

Investigators later found a piece of metal holding the fan blades had shattered, ruining the DC-10’s hydraulics. The accident killed 112 people.

“In any aircraft journey the parts of the engine go through a complex combination of stresses and vibrations. We need to know how the inherent cracks in the metal are going to be affected,” Professor Tong explained.

“The safety of aircraft depends on engineers knowing when the cracks are going to become a problem so that plans can be made to replace components during regular inspection cycles. The scheduling of these inspections critically depends on the precise knowledge of crack growth mechanisms and growth rate.”

Professor Tong said the research team would use novel experimental and computational methods to create a comprehensive computer modelling program that will show in detail how the components react under stress.

The Royal Society funding will allow the Portsmouth team to join forces with materials scientists from the University of Siegen in Germany.

“We will be working with the Siegen scientists, using a powerful transmission microscope (TEM) to examine the complex dislocation structure and other microscopic changes in the components caused by damage,” Professor Tong said.

“We will then take this information and create a mathematical model to accurately predict the rate of fatigue crack growth.

“This work will not only improve air safety, but also reduce the maintenance cost - currently running into billions of dollars worldwide - which means cheaper and safer air travel for all.”

The University of Portsmouth has a strong track record in aerospace mechanics. Researchers at the Department of Mechanical and Design Engineering have been working with Rolls Royce - the world’s leading manufacturer of aeroengines – for more than 30 years.

Rajiv Maharaj | alfa
Further information:
http://www.port.ac.uk

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>