Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Portsmouth develops new aircraft component testing method to make air travel safer and cheaper

09.01.2007
Experts at the University of Portsmouth are developing a new method for testing critical components of aircraft - a scientific breakthrough that will make air travel safer and cheaper.

Professor Jie Tong, an aerospace mechanics expert from the University’s Department of Mechanical and Design Engineering, is leading the international team of experts with funding from the Royal Society.

The team’s mission is to develop state-of-the-art computer modelling programs that will reveal how aircraft components react under the stresses of flying.

The existing life prediction method involves expensive mechanical testing - one of the reasons why it costs so much to buy a plane ticket.

In particular, the researchers are looking at small cracks inherent in metal components in aircraft engines. These cracks grow and change over time. This process is known as metal fatigue or ‘fatigue crack growth’.

Metal fatigue in aeroplane engines is not a common cause of crashes - pilot error is a larger one - but it has resulted in a number of incidents in the past, most notably the 1989 United Airlines crash in the United States when a passenger plane cartwheeled across the tarmac while trying to land.

Investigators later found a piece of metal holding the fan blades had shattered, ruining the DC-10’s hydraulics. The accident killed 112 people.

“In any aircraft journey the parts of the engine go through a complex combination of stresses and vibrations. We need to know how the inherent cracks in the metal are going to be affected,” Professor Tong explained.

“The safety of aircraft depends on engineers knowing when the cracks are going to become a problem so that plans can be made to replace components during regular inspection cycles. The scheduling of these inspections critically depends on the precise knowledge of crack growth mechanisms and growth rate.”

Professor Tong said the research team would use novel experimental and computational methods to create a comprehensive computer modelling program that will show in detail how the components react under stress.

The Royal Society funding will allow the Portsmouth team to join forces with materials scientists from the University of Siegen in Germany.

“We will be working with the Siegen scientists, using a powerful transmission microscope (TEM) to examine the complex dislocation structure and other microscopic changes in the components caused by damage,” Professor Tong said.

“We will then take this information and create a mathematical model to accurately predict the rate of fatigue crack growth.

“This work will not only improve air safety, but also reduce the maintenance cost - currently running into billions of dollars worldwide - which means cheaper and safer air travel for all.”

The University of Portsmouth has a strong track record in aerospace mechanics. Researchers at the Department of Mechanical and Design Engineering have been working with Rolls Royce - the world’s leading manufacturer of aeroengines – for more than 30 years.

Rajiv Maharaj | alfa
Further information:
http://www.port.ac.uk

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>