Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping young students to model complex problems

11.12.2006
Computer modelling allows young students to visualise complex relationships, express ideas, create environments and solve problems. Kids and teachers love using the technology. Now the e-COMODE project has created a collaborative learning environment to help young students design, build and test models with ease.

Up to now, computer education has focused on teaching children and young adults the basics of how to use personal computers. Typically, pupils learned how to use simple, straightforward applications such as word-processing, spreadsheets, browsers and special education software.

However, such low-level applications make use of only a fraction of the processing power available on today's PCs. Modern desktop machines, even the most basic versions, are easily capable of processing complex problems.

Which is why the team in the e?COMODE project aimed to exploit the real power in modern computers to teach children. A far-sighted ideal, yet the team have developed a system that enables students to develop and model a range of different phenomena.

Take photosynthesis. This is a complex issue that is difficult to explain without complicated organic chemistry, a field that is one of the most difficult disciplines to teach. But by using models that demonstrate the relationships between sunlight, chlorophyll, water and nutrients, students can directly interact with a photosynthesis model that enables them to better their understanding much faster than with laboratory methods alone.

And they love it. "The students and teachers where we've piloted the system are very enthusiastic, and once the pilot ended they wanted to know how they could continue to use the system," says e-COMODE project coordinator Esther Casado.

e-COMODE is a market validation project for the system, which was jointly developed by a number of project partners. The University of Patras for example developed ModellingSpace, the modelling platform. Atos Origin developed the collaboration software. Other partners developed further elements of the system, including about 40 specific learning objectives that are particularly difficult for 10 to 17 year olds to grasp.

These learning objectives focused for example on areas such as medieval history, and the relationships between the social strata at the time. Another looked at economics and the relationship between different mobile phone price plans. Among mobile-mad teenagers, this particular programme was hugely popular.

The system does instruct in basic computer and data processing skills. But its real advantage is the way that it unleashes the true power of computers, and teaches the higher-order computer functions in a way that's fun.

The system creates an open, collaborative modelling environment, where models can be created quickly. Those models can be stored, helping to build a library of developed models. And they can be shared, which allows others to comment on the models or adapt them for other purposes.

The full service specification includes a modelling environment, guidance on teacher training, collaboration and communication services, learning materials, implementation guidelines and lesson plans. Support for the system can include online technical support as well as pedagogical and organisational consulting services.

e-COMODE was a market validation project cofunded under the EU eTen programme, and the team's job was to develop the service, pilot it, and analyse the market to establish the system's viability. Based on the feasibility study carried out under the project, the partners have adapted the service offering and are disseminating the results of their market validation, to show schools the benefits of the system.

The market validation survey revealed that the programme was popular among students and teachers, that it could be set up and deployed easily, and that the learning objectives were achievable. Now the consortium is working on marketing and commercialisation.

"There's a lot of enthusiasm among teachers, which is important," Casado says. "But most of the education authorities are public services, and we have to convince them of the value of our work. We're currently adapting the website so it has a more marketing focus."

The project ended in September 2006 and, given the work required to convince public services of the value of systems like e-COMODE, it could be some time before it becomes generally deployed. But the project partners have pulled off a real achievement – the system offers a step change in the vision for computers in the classroom.

Jernett Karensen | alfa
Further information:
http://www.e-comode.com/
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>