Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping young students to model complex problems

11.12.2006
Computer modelling allows young students to visualise complex relationships, express ideas, create environments and solve problems. Kids and teachers love using the technology. Now the e-COMODE project has created a collaborative learning environment to help young students design, build and test models with ease.

Up to now, computer education has focused on teaching children and young adults the basics of how to use personal computers. Typically, pupils learned how to use simple, straightforward applications such as word-processing, spreadsheets, browsers and special education software.

However, such low-level applications make use of only a fraction of the processing power available on today's PCs. Modern desktop machines, even the most basic versions, are easily capable of processing complex problems.

Which is why the team in the e?COMODE project aimed to exploit the real power in modern computers to teach children. A far-sighted ideal, yet the team have developed a system that enables students to develop and model a range of different phenomena.

Take photosynthesis. This is a complex issue that is difficult to explain without complicated organic chemistry, a field that is one of the most difficult disciplines to teach. But by using models that demonstrate the relationships between sunlight, chlorophyll, water and nutrients, students can directly interact with a photosynthesis model that enables them to better their understanding much faster than with laboratory methods alone.

And they love it. "The students and teachers where we've piloted the system are very enthusiastic, and once the pilot ended they wanted to know how they could continue to use the system," says e-COMODE project coordinator Esther Casado.

e-COMODE is a market validation project for the system, which was jointly developed by a number of project partners. The University of Patras for example developed ModellingSpace, the modelling platform. Atos Origin developed the collaboration software. Other partners developed further elements of the system, including about 40 specific learning objectives that are particularly difficult for 10 to 17 year olds to grasp.

These learning objectives focused for example on areas such as medieval history, and the relationships between the social strata at the time. Another looked at economics and the relationship between different mobile phone price plans. Among mobile-mad teenagers, this particular programme was hugely popular.

The system does instruct in basic computer and data processing skills. But its real advantage is the way that it unleashes the true power of computers, and teaches the higher-order computer functions in a way that's fun.

The system creates an open, collaborative modelling environment, where models can be created quickly. Those models can be stored, helping to build a library of developed models. And they can be shared, which allows others to comment on the models or adapt them for other purposes.

The full service specification includes a modelling environment, guidance on teacher training, collaboration and communication services, learning materials, implementation guidelines and lesson plans. Support for the system can include online technical support as well as pedagogical and organisational consulting services.

e-COMODE was a market validation project cofunded under the EU eTen programme, and the team's job was to develop the service, pilot it, and analyse the market to establish the system's viability. Based on the feasibility study carried out under the project, the partners have adapted the service offering and are disseminating the results of their market validation, to show schools the benefits of the system.

The market validation survey revealed that the programme was popular among students and teachers, that it could be set up and deployed easily, and that the learning objectives were achievable. Now the consortium is working on marketing and commercialisation.

"There's a lot of enthusiasm among teachers, which is important," Casado says. "But most of the education authorities are public services, and we have to convince them of the value of our work. We're currently adapting the website so it has a more marketing focus."

The project ended in September 2006 and, given the work required to convince public services of the value of systems like e-COMODE, it could be some time before it becomes generally deployed. But the project partners have pulled off a real achievement – the system offers a step change in the vision for computers in the classroom.

Jernett Karensen | alfa
Further information:
http://www.e-comode.com/
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

nachricht Holograms taken to new dimension
19.07.2017 | University of Utah

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>