Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Web-based system leads to better, more timely data

30.10.2006
After two years of work, an innovative project using Web-based technologies to speed researcher access to a large body of new scientific data has demonstrated that not only access to but also the quality of the data has improved markedly.

A new paper* on the Web-enabled ThermoML thermodynamics global data exchange standard notes that the data-entry process catches and corrects data errors in roughly 10 percent of journal articles entered in the system.

A landmark partnership between the National Institute of Standards and Technology (NIST), several major scientific journals and the International Union of Pure and Applied Chemistry (IUPAC), ThermoML was developed to deal with the explosive growth in published data on thermodynamics. Thermodynamics is essential to understanding and designing chemical reactions in everything from huge industrial chemical plants to the biochemistry of individual cells in the body. With improvements in measurement technology, the quantity of published thermophysical and thermochemical data has been almost doubling every 10 years.

This vast flood of information not only presents a basic problem for researchers and engineers--how to find the data they need when they need it.-- but also has strained the traditional scientific peer-review and validation process. "Despite the peer-review process, problems in data validation have led, in many instances, to publication of data that are grossly erroneous and, at times, inconsistent with the fundamental laws of nature," the authors note.

The ThermoML project began as an attempt to simplify and speed the delivery of new thermodynamic data from producers to users. The system has three major components -- ThermoML itself, an IUPAC data format standard based on XML (a generic data formatting standard) customized for storing thermodynamic data; Software tools developed at the NIST Thermodynamic Research Center (TRC) to simplify entering data into the system in formats close to those used by the original journal documents, displaying it in various formats and performing basic data integrity checks; and The ThermoData Engine, a sophisticated expert system developed at NIST, that can generate on demand recommended, evaluated data based on the existing experimental and predicted data and their uncertainties.

Authors writing for five major journals that are partners in the program, the Journal of Chemical and Engineering Data, the Journal of Chemical Thermodynamics, Fluid Phase Equilibria, Thermochimica Acta, and the International Journal of Thermophysics, participate in the process by submitting the data for their articles using GDC software (available from NIST). The data are evaluated, and any potential inconsistencies reported back to the authors for verification. Based on two years of experience and some 1,000 articles, the authors write, an estimated 10 percent of articles reporting experimental thermodynamic data for organic compounds contain some erroneous information that would be "extremely difficult" to detect through the normal peer-review process.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Making Waves
29.06.2017 | Institute of Science and Technology Austria

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>