Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic whiskers can sense three-dimensional environment

10.10.2006
Many mammals use their whiskers to explore their environment and to construct a three-dimensional image of their world. Rodents, for example, use their whiskers to determine the size, shape and texture of objects, and seals use their whiskers to track the fluid wakes of their prey.

Two Northwestern University engineers have been studying the whisker system of rats to better understand how mechanical information from the whiskers gets transmitted to the brain and to develop artificial whisker arrays for engineering applications.

Mitra J. Hartmann, assistant professor of biomedical engineering and mechanical engineering in the McCormick School of Engineering and Applied Science, and Joseph H. Solomon, one of Hartmann's graduate students, have now developed arrays of robotic whiskers that sense in two dimensions, mimicking the capabilities of mammalian whiskers. They demonstrate that the arrays can sense information about both object shape and fluid flow.

A paper about the arrays, which may find application on assembly lines, in pipelines or on land-based autonomous rovers or underwater vehicles, was published in the Oct. 5 issue of the journal Nature.

"We show that the bending moment, or torque, at the whisker base can be used to generate three-dimensional spatial representations of the environment," said Hartmann. "We used this principle to make arrays of robotic whiskers that in many respects closely replicate rat whiskers." The technology, she said, could be used to extract the three-dimensional features of almost any solid object.

Rat whiskers move actively in one dimension, rotating at their base in a plane roughly parallel to the ground. When the whiskers hit an object, they can be deflected backwards, upwards or downwards by contact with the object. The mechanical bending of the whisker activates many thousands of sensory receptors located in the follicle at the whisker base. The receptors, in turn, send neural signals to the brain, where a three-dimensional image is presumably generated.

Hartmann and Solomon showed that their robotic whiskers could extract information about object shape by "whisking" (sweeping) the whiskers across a small sculpted head, which was chosen specifically for its complex shape. As the whiskers move across the object, strain gauges sense the bending of the whiskers and thus determine the location of different points on the head. A computer program then "connects the dots" to create a three-dimensional representation of the object.

The researchers also showed that a slightly different whisker array -- one in which the whiskers were widened to provide more surface area -- could determine the speed and direction of the flow of a fluid, much like a seal tracks the wake of prey.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>