Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel workflow language tackles climate change computing challenge

06.10.2006
A computing challenge encountered by the BBC Climate Change Experiment has led to an award-winning solution. Daniel Goodman from Oxford University won a best paper award at the UK e-Science All Hands Meeting (AHM) in Nottingham last month for devising a workflow language, Martlet, that enables the analysis of large datasets whose distribution is continually changing across a number of widely dispersed servers. Martlet uses an alternative style of programming model to that commonly used in workflow languages.

"This new approach builds on research in the computer science community over the past 40 years. For much of that time, many claimed this line of work was of academic interest, but of no practical relevance. Daniel's paper has shown how it has real application in tackling some of the key challenges facing the world today, such as climate change," says Professor Paul Watson of Newcastle University who chaired the AHM programme committee.

The BBC Climate Change Experiment is working with climateprediction.net, a major UK e-Science project funded by the Natural Environment Research Council. More than 200,000 people worldwide are participating in the experiment by donating spare capacity on their computers to run models of the Earth's climate.

As the dataset containing all model runs is too big to return to one location for analysis, it is stored on a number of servers in different locations worldwide. The challenge arises because the number of pieces this dataset is split into varies for a range of reasons, including the addition or removal of servers from the experiment, and the sub-setting of runs required for a given query. Climateprediction.net needed a way of analysing the data in situ that could also cope automatically with changes to the location or sub-division of data.

"Existing workflow languages are not up to the task because they implement a style of programming where the number of data inputs and the paths of data flow through the workflow are set when the workflow is submitted. This makes them unable to cope with subsequent changes to the dataset," says Daniel. He turned to constructs inspired from functional programming to solve the problem. These allow the workflow to adjust to the requirements of the data at run time and mean that changes to the way in which a dataset is split can be accommodated dynamically, so removing the need for users to keep adjusting their workflows.

Martlet has potential for use in many e-Science applications which distribute data between servers in a similar way to climateprediction.net. Its development also suggests that there could be other powerful new algorithms awaiting discovery once people start to think in terms of this alternative programming model. "Daniel's work has shown how work on core computer science can be used to meet the exciting challenges generated by e-Science applications. He has demonstrated how taking a different approach to organising the way in which tasks are executed can produce scientific results much more quickly," says Paul Watson.

Matt Goode | alfa
Further information:
http://www.rcuk.ac.uk

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>