Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel workflow language tackles climate change computing challenge

06.10.2006
A computing challenge encountered by the BBC Climate Change Experiment has led to an award-winning solution. Daniel Goodman from Oxford University won a best paper award at the UK e-Science All Hands Meeting (AHM) in Nottingham last month for devising a workflow language, Martlet, that enables the analysis of large datasets whose distribution is continually changing across a number of widely dispersed servers. Martlet uses an alternative style of programming model to that commonly used in workflow languages.

"This new approach builds on research in the computer science community over the past 40 years. For much of that time, many claimed this line of work was of academic interest, but of no practical relevance. Daniel's paper has shown how it has real application in tackling some of the key challenges facing the world today, such as climate change," says Professor Paul Watson of Newcastle University who chaired the AHM programme committee.

The BBC Climate Change Experiment is working with climateprediction.net, a major UK e-Science project funded by the Natural Environment Research Council. More than 200,000 people worldwide are participating in the experiment by donating spare capacity on their computers to run models of the Earth's climate.

As the dataset containing all model runs is too big to return to one location for analysis, it is stored on a number of servers in different locations worldwide. The challenge arises because the number of pieces this dataset is split into varies for a range of reasons, including the addition or removal of servers from the experiment, and the sub-setting of runs required for a given query. Climateprediction.net needed a way of analysing the data in situ that could also cope automatically with changes to the location or sub-division of data.

"Existing workflow languages are not up to the task because they implement a style of programming where the number of data inputs and the paths of data flow through the workflow are set when the workflow is submitted. This makes them unable to cope with subsequent changes to the dataset," says Daniel. He turned to constructs inspired from functional programming to solve the problem. These allow the workflow to adjust to the requirements of the data at run time and mean that changes to the way in which a dataset is split can be accommodated dynamically, so removing the need for users to keep adjusting their workflows.

Martlet has potential for use in many e-Science applications which distribute data between servers in a similar way to climateprediction.net. Its development also suggests that there could be other powerful new algorithms awaiting discovery once people start to think in terms of this alternative programming model. "Daniel's work has shown how work on core computer science can be used to meet the exciting challenges generated by e-Science applications. He has demonstrated how taking a different approach to organising the way in which tasks are executed can produce scientific results much more quickly," says Paul Watson.

Matt Goode | alfa
Further information:
http://www.rcuk.ac.uk

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>