Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spam filter design to benefit from internet routing data

14.09.2006
A database of more than 10 million spam email messages collected at just one Internet "spam sinkhole" suggests that Internet service providers could better fight unwanted junk email by addressing it at the network level, rather than using currently available message content filters.

Also, the research – conducted at the Georgia Institute of Technology's College of Computing -- identified two additional techniques for combating spam: improving the security of the Internet's routing infrastructure and developing algorithms to identify computers' membership in "botnets," which are groups of computers that are compromised and controlled remotely to send large volumes of spam. The findings are now directing the researchers' design of new systems to stem spam.

"Content filters are fighting a losing battle because it's easier for spammers to simply change their content than for us to build spam filters.," said Nick Feamster, a Georgia Tech assistant professor of computing. "We need another set of properties, not based on content. So what about network-level properties? It's harder for spammers to change network-level properties."

Feamster and his Ph.D. student Anirudh Ramachandran will present their findings on Sept. 14, 2006 in Pisa, Italy, at the Association for Computing Machinery's annual flagship conference of its Special Interest Group on Data Communication (SIGCOMM).

From 18 months of Internet routing and spam data the researchers collected in one domain, they have learned which network-level properties are most promising for consideration in spam filter design. Specifically, they learned that:

- Internet routes are being hijacked by spammers;

- they can identify many narrow ranges within Internet protocol (IP) address space that are generating only spam, and

- and they can identify the Internet service providers (ISP) from which spam is coming.

"We know route hijacking is occurring," Feamster said. "It's being done by a small, but fairly persistent and sophisticated group of spammers, who cannot be traced using conventional methods."

Route hijacking works like this: By exploiting weaknesses in Internet routing protocols, spammers can steal Internet address space by briefly advertising a route for that space to the rest of the Internet's routers. The spammers can then assign any IP address within that address space to their machines. They send their spam from those machines and then withdraw the route by which they sent the spam. By the time a recipient files a complaint related to this IP address, the route is gone and the IP address space is no longer reachable.

"Even if you're watching the hijack take place, it's difficult to tell where it's coming from," Feamster explained. "We can make some good guesses. But Internet routing protocols are insecure, so it's relatively easy for spammers to steal them and hard for us to identify the perpetrators."

Feamster and researchers elsewhere are actively working to improve the security of Internet routing protocols, he added.

Better spam filtering will also result from a system, which Feamster hopes to design, based on collaborative, network-level filtering among ISP operators.

"Within the single domain that we are studying, it's interesting that you don't see the same IP addresses repeatedly being used to send spam to that domain," Feamster said. "So ISP operators need to be able to securely share information about IP addresses associated with spam."

In addition to studying network-level properties of spam, Ramachandran and Feamster compared their lists of IP addresses used to send spam against eight frequently used "blacklists" compiled by network operators to help filter spam.

"We found that these blacklists listed IP addresses for only about half of the spam being sent using route hijacking," Feamster said.

"The best case scenario is that these blacklists are still missing IP addresses from which at least 20 percent of spam is sent…. This 20 percent rate of false negatives is likely to cause a high percentage of false positives, and so this approach may also cause a lot of legitimate email to be mistakenly tagged as spam."

The researchers also plan to use this finding in the spam filter development efforts, Feamster added. Meanwhile, the researchers are continuing to collect Internet routing and spam data.

"It's always nice to have long-term data to help us see trends," Feamster noted. "These are valuable studies that help us see if people's behavior changes over time."

Indeed, it has in this case. The rate of spam has nearly doubled in the past two years in the one domain where the researchers collected their routing data for this study.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>