Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spam filter design to benefit from internet routing data

14.09.2006
A database of more than 10 million spam email messages collected at just one Internet "spam sinkhole" suggests that Internet service providers could better fight unwanted junk email by addressing it at the network level, rather than using currently available message content filters.

Also, the research – conducted at the Georgia Institute of Technology's College of Computing -- identified two additional techniques for combating spam: improving the security of the Internet's routing infrastructure and developing algorithms to identify computers' membership in "botnets," which are groups of computers that are compromised and controlled remotely to send large volumes of spam. The findings are now directing the researchers' design of new systems to stem spam.

"Content filters are fighting a losing battle because it's easier for spammers to simply change their content than for us to build spam filters.," said Nick Feamster, a Georgia Tech assistant professor of computing. "We need another set of properties, not based on content. So what about network-level properties? It's harder for spammers to change network-level properties."

Feamster and his Ph.D. student Anirudh Ramachandran will present their findings on Sept. 14, 2006 in Pisa, Italy, at the Association for Computing Machinery's annual flagship conference of its Special Interest Group on Data Communication (SIGCOMM).

From 18 months of Internet routing and spam data the researchers collected in one domain, they have learned which network-level properties are most promising for consideration in spam filter design. Specifically, they learned that:

- Internet routes are being hijacked by spammers;

- they can identify many narrow ranges within Internet protocol (IP) address space that are generating only spam, and

- and they can identify the Internet service providers (ISP) from which spam is coming.

"We know route hijacking is occurring," Feamster said. "It's being done by a small, but fairly persistent and sophisticated group of spammers, who cannot be traced using conventional methods."

Route hijacking works like this: By exploiting weaknesses in Internet routing protocols, spammers can steal Internet address space by briefly advertising a route for that space to the rest of the Internet's routers. The spammers can then assign any IP address within that address space to their machines. They send their spam from those machines and then withdraw the route by which they sent the spam. By the time a recipient files a complaint related to this IP address, the route is gone and the IP address space is no longer reachable.

"Even if you're watching the hijack take place, it's difficult to tell where it's coming from," Feamster explained. "We can make some good guesses. But Internet routing protocols are insecure, so it's relatively easy for spammers to steal them and hard for us to identify the perpetrators."

Feamster and researchers elsewhere are actively working to improve the security of Internet routing protocols, he added.

Better spam filtering will also result from a system, which Feamster hopes to design, based on collaborative, network-level filtering among ISP operators.

"Within the single domain that we are studying, it's interesting that you don't see the same IP addresses repeatedly being used to send spam to that domain," Feamster said. "So ISP operators need to be able to securely share information about IP addresses associated with spam."

In addition to studying network-level properties of spam, Ramachandran and Feamster compared their lists of IP addresses used to send spam against eight frequently used "blacklists" compiled by network operators to help filter spam.

"We found that these blacklists listed IP addresses for only about half of the spam being sent using route hijacking," Feamster said.

"The best case scenario is that these blacklists are still missing IP addresses from which at least 20 percent of spam is sent…. This 20 percent rate of false negatives is likely to cause a high percentage of false positives, and so this approach may also cause a lot of legitimate email to be mistakenly tagged as spam."

The researchers also plan to use this finding in the spam filter development efforts, Feamster added. Meanwhile, the researchers are continuing to collect Internet routing and spam data.

"It's always nice to have long-term data to help us see trends," Feamster noted. "These are valuable studies that help us see if people's behavior changes over time."

Indeed, it has in this case. The rate of spam has nearly doubled in the past two years in the one domain where the researchers collected their routing data for this study.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>