Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spam filter design to benefit from internet routing data

14.09.2006
A database of more than 10 million spam email messages collected at just one Internet "spam sinkhole" suggests that Internet service providers could better fight unwanted junk email by addressing it at the network level, rather than using currently available message content filters.

Also, the research – conducted at the Georgia Institute of Technology's College of Computing -- identified two additional techniques for combating spam: improving the security of the Internet's routing infrastructure and developing algorithms to identify computers' membership in "botnets," which are groups of computers that are compromised and controlled remotely to send large volumes of spam. The findings are now directing the researchers' design of new systems to stem spam.

"Content filters are fighting a losing battle because it's easier for spammers to simply change their content than for us to build spam filters.," said Nick Feamster, a Georgia Tech assistant professor of computing. "We need another set of properties, not based on content. So what about network-level properties? It's harder for spammers to change network-level properties."

Feamster and his Ph.D. student Anirudh Ramachandran will present their findings on Sept. 14, 2006 in Pisa, Italy, at the Association for Computing Machinery's annual flagship conference of its Special Interest Group on Data Communication (SIGCOMM).

From 18 months of Internet routing and spam data the researchers collected in one domain, they have learned which network-level properties are most promising for consideration in spam filter design. Specifically, they learned that:

- Internet routes are being hijacked by spammers;

- they can identify many narrow ranges within Internet protocol (IP) address space that are generating only spam, and

- and they can identify the Internet service providers (ISP) from which spam is coming.

"We know route hijacking is occurring," Feamster said. "It's being done by a small, but fairly persistent and sophisticated group of spammers, who cannot be traced using conventional methods."

Route hijacking works like this: By exploiting weaknesses in Internet routing protocols, spammers can steal Internet address space by briefly advertising a route for that space to the rest of the Internet's routers. The spammers can then assign any IP address within that address space to their machines. They send their spam from those machines and then withdraw the route by which they sent the spam. By the time a recipient files a complaint related to this IP address, the route is gone and the IP address space is no longer reachable.

"Even if you're watching the hijack take place, it's difficult to tell where it's coming from," Feamster explained. "We can make some good guesses. But Internet routing protocols are insecure, so it's relatively easy for spammers to steal them and hard for us to identify the perpetrators."

Feamster and researchers elsewhere are actively working to improve the security of Internet routing protocols, he added.

Better spam filtering will also result from a system, which Feamster hopes to design, based on collaborative, network-level filtering among ISP operators.

"Within the single domain that we are studying, it's interesting that you don't see the same IP addresses repeatedly being used to send spam to that domain," Feamster said. "So ISP operators need to be able to securely share information about IP addresses associated with spam."

In addition to studying network-level properties of spam, Ramachandran and Feamster compared their lists of IP addresses used to send spam against eight frequently used "blacklists" compiled by network operators to help filter spam.

"We found that these blacklists listed IP addresses for only about half of the spam being sent using route hijacking," Feamster said.

"The best case scenario is that these blacklists are still missing IP addresses from which at least 20 percent of spam is sent…. This 20 percent rate of false negatives is likely to cause a high percentage of false positives, and so this approach may also cause a lot of legitimate email to be mistakenly tagged as spam."

The researchers also plan to use this finding in the spam filter development efforts, Feamster added. Meanwhile, the researchers are continuing to collect Internet routing and spam data.

"It's always nice to have long-term data to help us see trends," Feamster noted. "These are valuable studies that help us see if people's behavior changes over time."

Indeed, it has in this case. The rate of spam has nearly doubled in the past two years in the one domain where the researchers collected their routing data for this study.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>