Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather Forecast Accuracy Gets Boost with New Computer Model

29.08.2006
An advanced forecasting model that predicts several types of extreme weather with substantially improved accuracy has been adopted for day-to-day operational use by civilian and military weather forecasters. The new computer model was created through a partnership that includes the National Oceanic and Atmospheric Administration (NOAA), the National Center for Atmospheric Research (NCAR), and more than 150 other organizations and universities in the United States and abroad.

The high-resolution Weather Research and Forecasting model (WRF) is the first model to serve as both the backbone of the nation's public weather forecasts and a tool for cutting-edge weather research. Because the model fulfills both functions, it is easier for research findings to be translated into improved operational models, leading to better forecasts.

The model was adopted for use by NOAA's National Weather Service (NWS) as the primary model for its one-to-three-day U.S. forecasts and as a key part of the NWS's ensemble modeling system for short-range forecasts. The U.S. Air Force Weather Agency (AFWA) also has used WRF for several areas of operations around the world.

"The Weather Research and Forecasting model development project is the first time researchers and operational scientists have come together to collaborate on a weather modeling project of this magnitude," says Louis Uccellini, director of NOAA's National Centers for Environmental Prediction.

By late 2007, the new model will shape forecasts that serve more than a third of the world's population. It is being adopted by the national weather agencies of Taiwan, South Korea, China, and India.

"WRF is becoming the world's most popular model for weather prediction because it serves forecasters as well as researchers," says NCAR director Tim Killeen.

Tests over the last year at NOAA and AFWA have shown that the new model offers multiple benefits over its predecessor models. For example:

Errors in nighttime temperature and humidity across the eastern United States are cut by more than 50%.

The model depicts flight-level winds in the subtropics that are stronger and more realistic, thus leading to improved turbulence guidance for aircraft.

The model outperformed its predecessor in more than 70% of the situations studied by AFWA.

WRF incorporates data from satellites, radars, and a wide range of other tools with greater ease than earlier models.

NCAR has been experimenting with an advanced research version of WRF, with very fine resolution and innovative techniques, to demonstrate where potential may exist for improving the accuracy of hurricane track, intensity, and rainfall forecasts. A special hurricane-oriented version of WRF, the HWRF, is now being developed by scientists from NOAA, the Naval Research Laboratory, the University of Rhode Island, and Florida State University to support NOAA hurricane forecasting. The high-resolution HWRF will track waves and other features of the ocean and atmosphere, including the heat and moisture exchanged between them. Its depiction of hurricane cores and the ocean below them will be enhanced by data from satellites, aircraft, and other observing tools.

WRF also is skilled at depicting intense squall lines, supercell thunderstorms, and other types of severe weather. Although no model can pinpoint hours ahead of time where a thunderstorm will form, WRF outpaces many models in its ability to predict what types of storms could form and how they might evolve.

Approximately 4,000 people in 77 countries are registered users of WRF. Many of these users suggest improvements, which are tested for operational usefulness at a testbed facility based at NCAR and supported by NOAA.

"WRF will continue to improve because of all the research and development pouring into it from our nation's leading academic and scientific institutions," said AFWA commander Patrick Condray.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>