Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingertip Device Helps Computers Read Hand Gestures

01.08.2006
With the tap of a single finger, computer users soon may be drawn deeper into the virtual world using a new device developed in the University at Buffalo's Virtual Reality Lab.

UB researchers say their "Fingertip Digitizer," which users wear on the tip of the index finger, can transfer to the virtual world the meaning and intent of common hand gestures, such as pointing, wagging the finger, tapping in the air or other movements that can be used to direct the actions of an electronic device, much like a mouse directs the actions of a personal computer, but with greater precision.

What's more, the Fingertip Digitizer can transfer to personal computers very precise information about the physical characteristics of an object -- and even can sense the shape and size of a human gland or tumor -- when a user taps, scratches, squeezes, strokes or glides a finger over the surface of the object.

"The gesture-recognition function of this device, in particular, has great potential for a wide range of applications, from personal computing to medical diagnostics to computer games," says Young-Seok Kim, who received his doctoral degree in mechanical engineering from UB in May. Kim created the Fingertip Digitizer with Thenkurussi Kesavadas, director of UB's Virtual Reality Lab and associate professor of mechanical and aerospace engineering in the UB School of Engineering and Applied Sciences.

According to Kesavadas, the Fingertip Digitizer will help bridge the gap between what a person knows and what a computer knows.

"With this device a computer, cell phone or computer game could read human intention more naturally," he explains. "Eventually the Fingertip Digitizer may be used as a high-end substitute for a mouse, a keyboard or a joystick."

Kim and Kesavadas will demonstrate a prototype of the Fingertip Digitizer at the SIGGRAPH2006 technology conference July 30 through Aug. 3 in Boston. They expect the Fingertip Digitizer and related software to be market- ready within three years.

The creators of the year's best research innovations in computer graphics and interactive techniques are invited to SIGGRAPH2006, the largest conference of its type in the world. For information, go to http://www.siggraph.org/s2006/main.php?f=conference&p=etech&s=fingertip.

The Fingertip Digitizer is a major enhancement in haptic technology, an emerging field focused on bringing a sense of touch to technological devices, according to Kim and Kesavadas. Most haptic tools on the market are designed as probes and are gripped like a pen. They can be difficult to manipulate and therefore may not give a precise representation of the object the user is feeling.

The Fingertip Digitizer's design, the researchers explain, is modeled after the biomechanical properties of a finger, which means it can more accurately and intuitively sense the physical properties of an object. To sense touch and movement, the device uses a force sensor, an accelerometer and a motion tracker -- all contained in thimble-sized device that fits comfortably on a user's finger.

A real-time, multi-rate data acquisition system used with the Fingertip Digitizer reads the force feedback exerted by an object as it is touched by the user. To read hand gestures, the system tracks the acceleration and location of the fingertip device as the finger moves and gestures.

A touch screen is not required. With the device attached to the fingertip, the user simply would gesture in the air as he looks at a computer screen where a software program or computer game may be running. In this way, the user can direct the opening or moving of an electronic file, for example. Using the device as a computer-game accessory, the user could imitate the squeezing of a trigger or the stroking of pool cue, for example, say Kim and Kesavadas.

A provisional patent application has been filed on the device.

The researchers are developing Touch Painter and Touch Canvas software to accompany the Fingertip Digitizer. Using this software and the Fingertip Digitizer, the user will be able to apply digital paint to a computer-screen canvas with a few flicks or taps of the index finger.

For more information about the UB Virtual Reality Lab, go to http://www.vrlab.buffalo.edu.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

John DellaContrada | EurekAlert!
Further information:
http://www.vrlab.buffalo.edu

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>