Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingertip Device Helps Computers Read Hand Gestures

01.08.2006
With the tap of a single finger, computer users soon may be drawn deeper into the virtual world using a new device developed in the University at Buffalo's Virtual Reality Lab.

UB researchers say their "Fingertip Digitizer," which users wear on the tip of the index finger, can transfer to the virtual world the meaning and intent of common hand gestures, such as pointing, wagging the finger, tapping in the air or other movements that can be used to direct the actions of an electronic device, much like a mouse directs the actions of a personal computer, but with greater precision.

What's more, the Fingertip Digitizer can transfer to personal computers very precise information about the physical characteristics of an object -- and even can sense the shape and size of a human gland or tumor -- when a user taps, scratches, squeezes, strokes or glides a finger over the surface of the object.

"The gesture-recognition function of this device, in particular, has great potential for a wide range of applications, from personal computing to medical diagnostics to computer games," says Young-Seok Kim, who received his doctoral degree in mechanical engineering from UB in May. Kim created the Fingertip Digitizer with Thenkurussi Kesavadas, director of UB's Virtual Reality Lab and associate professor of mechanical and aerospace engineering in the UB School of Engineering and Applied Sciences.

According to Kesavadas, the Fingertip Digitizer will help bridge the gap between what a person knows and what a computer knows.

"With this device a computer, cell phone or computer game could read human intention more naturally," he explains. "Eventually the Fingertip Digitizer may be used as a high-end substitute for a mouse, a keyboard or a joystick."

Kim and Kesavadas will demonstrate a prototype of the Fingertip Digitizer at the SIGGRAPH2006 technology conference July 30 through Aug. 3 in Boston. They expect the Fingertip Digitizer and related software to be market- ready within three years.

The creators of the year's best research innovations in computer graphics and interactive techniques are invited to SIGGRAPH2006, the largest conference of its type in the world. For information, go to http://www.siggraph.org/s2006/main.php?f=conference&p=etech&s=fingertip.

The Fingertip Digitizer is a major enhancement in haptic technology, an emerging field focused on bringing a sense of touch to technological devices, according to Kim and Kesavadas. Most haptic tools on the market are designed as probes and are gripped like a pen. They can be difficult to manipulate and therefore may not give a precise representation of the object the user is feeling.

The Fingertip Digitizer's design, the researchers explain, is modeled after the biomechanical properties of a finger, which means it can more accurately and intuitively sense the physical properties of an object. To sense touch and movement, the device uses a force sensor, an accelerometer and a motion tracker -- all contained in thimble-sized device that fits comfortably on a user's finger.

A real-time, multi-rate data acquisition system used with the Fingertip Digitizer reads the force feedback exerted by an object as it is touched by the user. To read hand gestures, the system tracks the acceleration and location of the fingertip device as the finger moves and gestures.

A touch screen is not required. With the device attached to the fingertip, the user simply would gesture in the air as he looks at a computer screen where a software program or computer game may be running. In this way, the user can direct the opening or moving of an electronic file, for example. Using the device as a computer-game accessory, the user could imitate the squeezing of a trigger or the stroking of pool cue, for example, say Kim and Kesavadas.

A provisional patent application has been filed on the device.

The researchers are developing Touch Painter and Touch Canvas software to accompany the Fingertip Digitizer. Using this software and the Fingertip Digitizer, the user will be able to apply digital paint to a computer-screen canvas with a few flicks or taps of the index finger.

For more information about the UB Virtual Reality Lab, go to http://www.vrlab.buffalo.edu.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

John DellaContrada | EurekAlert!
Further information:
http://www.vrlab.buffalo.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>