Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingertip Device Helps Computers Read Hand Gestures

01.08.2006
With the tap of a single finger, computer users soon may be drawn deeper into the virtual world using a new device developed in the University at Buffalo's Virtual Reality Lab.

UB researchers say their "Fingertip Digitizer," which users wear on the tip of the index finger, can transfer to the virtual world the meaning and intent of common hand gestures, such as pointing, wagging the finger, tapping in the air or other movements that can be used to direct the actions of an electronic device, much like a mouse directs the actions of a personal computer, but with greater precision.

What's more, the Fingertip Digitizer can transfer to personal computers very precise information about the physical characteristics of an object -- and even can sense the shape and size of a human gland or tumor -- when a user taps, scratches, squeezes, strokes or glides a finger over the surface of the object.

"The gesture-recognition function of this device, in particular, has great potential for a wide range of applications, from personal computing to medical diagnostics to computer games," says Young-Seok Kim, who received his doctoral degree in mechanical engineering from UB in May. Kim created the Fingertip Digitizer with Thenkurussi Kesavadas, director of UB's Virtual Reality Lab and associate professor of mechanical and aerospace engineering in the UB School of Engineering and Applied Sciences.

According to Kesavadas, the Fingertip Digitizer will help bridge the gap between what a person knows and what a computer knows.

"With this device a computer, cell phone or computer game could read human intention more naturally," he explains. "Eventually the Fingertip Digitizer may be used as a high-end substitute for a mouse, a keyboard or a joystick."

Kim and Kesavadas will demonstrate a prototype of the Fingertip Digitizer at the SIGGRAPH2006 technology conference July 30 through Aug. 3 in Boston. They expect the Fingertip Digitizer and related software to be market- ready within three years.

The creators of the year's best research innovations in computer graphics and interactive techniques are invited to SIGGRAPH2006, the largest conference of its type in the world. For information, go to http://www.siggraph.org/s2006/main.php?f=conference&p=etech&s=fingertip.

The Fingertip Digitizer is a major enhancement in haptic technology, an emerging field focused on bringing a sense of touch to technological devices, according to Kim and Kesavadas. Most haptic tools on the market are designed as probes and are gripped like a pen. They can be difficult to manipulate and therefore may not give a precise representation of the object the user is feeling.

The Fingertip Digitizer's design, the researchers explain, is modeled after the biomechanical properties of a finger, which means it can more accurately and intuitively sense the physical properties of an object. To sense touch and movement, the device uses a force sensor, an accelerometer and a motion tracker -- all contained in thimble-sized device that fits comfortably on a user's finger.

A real-time, multi-rate data acquisition system used with the Fingertip Digitizer reads the force feedback exerted by an object as it is touched by the user. To read hand gestures, the system tracks the acceleration and location of the fingertip device as the finger moves and gestures.

A touch screen is not required. With the device attached to the fingertip, the user simply would gesture in the air as he looks at a computer screen where a software program or computer game may be running. In this way, the user can direct the opening or moving of an electronic file, for example. Using the device as a computer-game accessory, the user could imitate the squeezing of a trigger or the stroking of pool cue, for example, say Kim and Kesavadas.

A provisional patent application has been filed on the device.

The researchers are developing Touch Painter and Touch Canvas software to accompany the Fingertip Digitizer. Using this software and the Fingertip Digitizer, the user will be able to apply digital paint to a computer-screen canvas with a few flicks or taps of the index finger.

For more information about the UB Virtual Reality Lab, go to http://www.vrlab.buffalo.edu.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

John DellaContrada | EurekAlert!
Further information:
http://www.vrlab.buffalo.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>