Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingertip Device Helps Computers Read Hand Gestures

01.08.2006
With the tap of a single finger, computer users soon may be drawn deeper into the virtual world using a new device developed in the University at Buffalo's Virtual Reality Lab.

UB researchers say their "Fingertip Digitizer," which users wear on the tip of the index finger, can transfer to the virtual world the meaning and intent of common hand gestures, such as pointing, wagging the finger, tapping in the air or other movements that can be used to direct the actions of an electronic device, much like a mouse directs the actions of a personal computer, but with greater precision.

What's more, the Fingertip Digitizer can transfer to personal computers very precise information about the physical characteristics of an object -- and even can sense the shape and size of a human gland or tumor -- when a user taps, scratches, squeezes, strokes or glides a finger over the surface of the object.

"The gesture-recognition function of this device, in particular, has great potential for a wide range of applications, from personal computing to medical diagnostics to computer games," says Young-Seok Kim, who received his doctoral degree in mechanical engineering from UB in May. Kim created the Fingertip Digitizer with Thenkurussi Kesavadas, director of UB's Virtual Reality Lab and associate professor of mechanical and aerospace engineering in the UB School of Engineering and Applied Sciences.

According to Kesavadas, the Fingertip Digitizer will help bridge the gap between what a person knows and what a computer knows.

"With this device a computer, cell phone or computer game could read human intention more naturally," he explains. "Eventually the Fingertip Digitizer may be used as a high-end substitute for a mouse, a keyboard or a joystick."

Kim and Kesavadas will demonstrate a prototype of the Fingertip Digitizer at the SIGGRAPH2006 technology conference July 30 through Aug. 3 in Boston. They expect the Fingertip Digitizer and related software to be market- ready within three years.

The creators of the year's best research innovations in computer graphics and interactive techniques are invited to SIGGRAPH2006, the largest conference of its type in the world. For information, go to http://www.siggraph.org/s2006/main.php?f=conference&p=etech&s=fingertip.

The Fingertip Digitizer is a major enhancement in haptic technology, an emerging field focused on bringing a sense of touch to technological devices, according to Kim and Kesavadas. Most haptic tools on the market are designed as probes and are gripped like a pen. They can be difficult to manipulate and therefore may not give a precise representation of the object the user is feeling.

The Fingertip Digitizer's design, the researchers explain, is modeled after the biomechanical properties of a finger, which means it can more accurately and intuitively sense the physical properties of an object. To sense touch and movement, the device uses a force sensor, an accelerometer and a motion tracker -- all contained in thimble-sized device that fits comfortably on a user's finger.

A real-time, multi-rate data acquisition system used with the Fingertip Digitizer reads the force feedback exerted by an object as it is touched by the user. To read hand gestures, the system tracks the acceleration and location of the fingertip device as the finger moves and gestures.

A touch screen is not required. With the device attached to the fingertip, the user simply would gesture in the air as he looks at a computer screen where a software program or computer game may be running. In this way, the user can direct the opening or moving of an electronic file, for example. Using the device as a computer-game accessory, the user could imitate the squeezing of a trigger or the stroking of pool cue, for example, say Kim and Kesavadas.

A provisional patent application has been filed on the device.

The researchers are developing Touch Painter and Touch Canvas software to accompany the Fingertip Digitizer. Using this software and the Fingertip Digitizer, the user will be able to apply digital paint to a computer-screen canvas with a few flicks or taps of the index finger.

For more information about the UB Virtual Reality Lab, go to http://www.vrlab.buffalo.edu.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

John DellaContrada | EurekAlert!
Further information:
http://www.vrlab.buffalo.edu

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>