Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

I Robot, your companion

30.06.2006
Robotic technology is advancing apace and now a top team of European scientists and engineers hope to make the leap from single function ‘dumb’ machines to adaptive learning machines.

The concept of a cognitive robotic companion inspires some of the best science fiction but one day may be science fact following the work of the four-year COGNIRON project funded since January 2004 by the IST’s Future and Emerging Technologies initiative. But what could a cognitive robot companion do?


Perception/Interpretation and Interaction with humans are two of the four key capacities required by a robot companion –credits : Fraunhofer IPA, LAAS-CNRS, University of Amsterdam, KTH

"Well, that's a difficult question. The example that's often used is a robot that's able to fulfil your needs, like passing you a drink or helping in everyday tasks," says Dr Raja Chatila, research director at the Systems Architecture and Analysis Laboratory of the French Centre National de la Recherche Scientifique (LAAS-CNRS), and COGNIRON project coordinator.

"That might seem a bit trivial, but let me ask you a question: In the 1970s, what was the use of a personal computer?" he asks.

It's a good point. In fact, it was then impossible to imagine how PCs would change the world's economics, politics and society in just 30 years. The eventual uses, once the technology developed, were far from trivial.

COGNIRON set out on the same principle, given that society is constantly evolving, and the project partners hope to tackle some of the key issues that need to be resolved for the development of a cognitive robot companion, which could be used as assistants for disabled and elderly people or the general population. Who wouldn't like, for instance, their breakfast ready when they awoke, deliveries accepted while they were at work and their apartment cleaned upon their return?

The key issue governing these tasks is intelligence and developing intelligent behaviour on a number of fronts, the corner stone and main work of COGNIRON.

Organised around seven key research themes, the project studies multimodal dialogues, detection and understanding of human activity, social behaviour and embodied interaction, skill and task learning, spatial cognition and multimodal situation awareness, as well as intentionality and initiative. Finally, the seventh research theme, systems levels integration and evaluation, focuses on integrating all the other themes into a cohesive, cogitating whole.

Dr Chatila summarises the purpose of the seven themes. "Research breaks down into four capacities required by a cognitive robot companion: perception and cognition of environment; learning by observation; decision making; communication and interaction with humans."

Decision-making is a fundamental capability of a cognitive robot whether it's for autonomous deliberation, task execution, or for human-robot collaborative problem solving. It also integrates the three other capacities: interaction, learning and understanding the environment.

"Getting a robot to move around a human, without hurting them, and while making them feel comfortable, is a vital task," says Dr Chatila.

To work, it means a robot must pick up subtle cues. If, for instance, a human leans forward to get up, the robot needs to understand the purpose of that movement. What's more, much of human communication is non-verbal, and such cognitive machines need to pick up on that if they are to be useful, rather than irritating.

Even in verbal communication there are many habits robots need to acquire that are so second nature to humans that we never think of them. "For example, turn taking in conversation. Humans take turns to [talk], we need to find a way to make robots do the same," says Dr Chatila. A robot that keeps interrupting would get on an owner's nerves.

To tackle the problems, the researchers took inspiration from natural cognition as it occurs in humans, which is one reason why a cognitive robot companion needs to be able to learn.

Despite its highly ambitious aims the project made enormous progress and the team feel confident they will meet their criteria for success: three concrete implementations, the so-called ‘Key Experiments’ being implemented on real robots for the integration, demonstration and validation of the research results.

One experiment will feature a robot building a model of its environment in the course of a home tour, another will feature a curious and proactive robot that will be able to infer that a human needs something to be done, while the third one will demonstrate a robot's ability to learn by imitation and repetition.

In fact, the project has already partially implemented all three experiments, eighteen months before the project ends. "The three experiments are an expression of our achievement in research and integration," says Dr Chatila.

He emphasises that this is a promising start, but it will be a very long road before a fully functional Cognitive Robot Companion will be realised and potentially commercialised. COGNIRON will advance the state-of-the-art and understanding of the different components required but will not yet allow a fully integrated robot endowed with all the required capacities to be built.

Source: Based on information from COGNIRON

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>