Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

I Robot, your companion

30.06.2006
Robotic technology is advancing apace and now a top team of European scientists and engineers hope to make the leap from single function ‘dumb’ machines to adaptive learning machines.

The concept of a cognitive robotic companion inspires some of the best science fiction but one day may be science fact following the work of the four-year COGNIRON project funded since January 2004 by the IST’s Future and Emerging Technologies initiative. But what could a cognitive robot companion do?


Perception/Interpretation and Interaction with humans are two of the four key capacities required by a robot companion –credits : Fraunhofer IPA, LAAS-CNRS, University of Amsterdam, KTH

"Well, that's a difficult question. The example that's often used is a robot that's able to fulfil your needs, like passing you a drink or helping in everyday tasks," says Dr Raja Chatila, research director at the Systems Architecture and Analysis Laboratory of the French Centre National de la Recherche Scientifique (LAAS-CNRS), and COGNIRON project coordinator.

"That might seem a bit trivial, but let me ask you a question: In the 1970s, what was the use of a personal computer?" he asks.

It's a good point. In fact, it was then impossible to imagine how PCs would change the world's economics, politics and society in just 30 years. The eventual uses, once the technology developed, were far from trivial.

COGNIRON set out on the same principle, given that society is constantly evolving, and the project partners hope to tackle some of the key issues that need to be resolved for the development of a cognitive robot companion, which could be used as assistants for disabled and elderly people or the general population. Who wouldn't like, for instance, their breakfast ready when they awoke, deliveries accepted while they were at work and their apartment cleaned upon their return?

The key issue governing these tasks is intelligence and developing intelligent behaviour on a number of fronts, the corner stone and main work of COGNIRON.

Organised around seven key research themes, the project studies multimodal dialogues, detection and understanding of human activity, social behaviour and embodied interaction, skill and task learning, spatial cognition and multimodal situation awareness, as well as intentionality and initiative. Finally, the seventh research theme, systems levels integration and evaluation, focuses on integrating all the other themes into a cohesive, cogitating whole.

Dr Chatila summarises the purpose of the seven themes. "Research breaks down into four capacities required by a cognitive robot companion: perception and cognition of environment; learning by observation; decision making; communication and interaction with humans."

Decision-making is a fundamental capability of a cognitive robot whether it's for autonomous deliberation, task execution, or for human-robot collaborative problem solving. It also integrates the three other capacities: interaction, learning and understanding the environment.

"Getting a robot to move around a human, without hurting them, and while making them feel comfortable, is a vital task," says Dr Chatila.

To work, it means a robot must pick up subtle cues. If, for instance, a human leans forward to get up, the robot needs to understand the purpose of that movement. What's more, much of human communication is non-verbal, and such cognitive machines need to pick up on that if they are to be useful, rather than irritating.

Even in verbal communication there are many habits robots need to acquire that are so second nature to humans that we never think of them. "For example, turn taking in conversation. Humans take turns to [talk], we need to find a way to make robots do the same," says Dr Chatila. A robot that keeps interrupting would get on an owner's nerves.

To tackle the problems, the researchers took inspiration from natural cognition as it occurs in humans, which is one reason why a cognitive robot companion needs to be able to learn.

Despite its highly ambitious aims the project made enormous progress and the team feel confident they will meet their criteria for success: three concrete implementations, the so-called ‘Key Experiments’ being implemented on real robots for the integration, demonstration and validation of the research results.

One experiment will feature a robot building a model of its environment in the course of a home tour, another will feature a curious and proactive robot that will be able to infer that a human needs something to be done, while the third one will demonstrate a robot's ability to learn by imitation and repetition.

In fact, the project has already partially implemented all three experiments, eighteen months before the project ends. "The three experiments are an expression of our achievement in research and integration," says Dr Chatila.

He emphasises that this is a promising start, but it will be a very long road before a fully functional Cognitive Robot Companion will be realised and potentially commercialised. COGNIRON will advance the state-of-the-art and understanding of the different components required but will not yet allow a fully integrated robot endowed with all the required capacities to be built.

Source: Based on information from COGNIRON

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>