Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VBI and EML Research launch COPASI simulation software for modeling biochemical and systems biology networks

19.06.2006
EML Research and the Virginia Bioinformatics Institute (VBI) at Virginia Tech today announced the launch of the COPASI simulation software. COPASI (Complex Pathway Simulator) is a major software package that allows users to model, simulate and analyze biochemical and systems biology networks. COPASI, which supports the Systems Biology Markup Language (SBML) standard for systems biology software, enables researchers to investigate how a system is working by allowing them to construct biochemical models, reproduce experimental results and justify the validity of the chosen model.

The software may be freely downloaded at www.copasi.org for non-commercial purposes.

Pedro Mendes, Associate Professor at VBI, remarked: “The first official release of COPASI represents a key milestone in delivering a fully comprehensive software solution for modeling and simulation to the life science community.” He added: “We have been working closely with Ursula Kummer’s group at EML Research to deliver an open-source software package that aids in the understanding of cellular and molecular behavior and which facilitates the quantitative interpretation of modern experiments. COPASI is the culmination of six years of intense development work to deliver a package that meets the real needs of life scientists. The future development of COPASI will continue to strive towards providing a powerful package that every biologist can use, not just experts in systems biology.”

COPASI simplifies the task of model building by assisting the user in translating the language of chemistry (reactions) to mathematics (matrices and differential equations). The user-friendly interface is combined with a set of sophisticated numerical algorithms that assure the results are obtained quickly and accurately. COPASI simulates the kinetics of systems of biochemical reactions and provides a number of tools to fit models to data, optimize any function of the model, perform metabolic control analysis and linear stability analysis.

Dr. Ursula Kummer, Principal Investigator at EML Research, commented: “Simulation and modeling are becoming increasingly important tools in systems biology research and can be used to test the physical and chemical limitations as well as feasibility of a wide range of biochemical reactions. We anticipate that COPASI will prove invaluable to researchers not only in simulating increasingly complex networks but also in helping to understand how external factors, for example drugs, impact metabolic systems.” She added: “We have already seen many applications from our existing user community and expect many more due to COPASI’s inherent flexibility for top-down and bottom-up modeling.”

Sven Sahle | alfa
Further information:
http://www.eml-research.de
http://www.copasi.org

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>