Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VBI and EML Research launch COPASI simulation software for modeling biochemical and systems biology networks

19.06.2006
EML Research and the Virginia Bioinformatics Institute (VBI) at Virginia Tech today announced the launch of the COPASI simulation software. COPASI (Complex Pathway Simulator) is a major software package that allows users to model, simulate and analyze biochemical and systems biology networks. COPASI, which supports the Systems Biology Markup Language (SBML) standard for systems biology software, enables researchers to investigate how a system is working by allowing them to construct biochemical models, reproduce experimental results and justify the validity of the chosen model.

The software may be freely downloaded at www.copasi.org for non-commercial purposes.

Pedro Mendes, Associate Professor at VBI, remarked: “The first official release of COPASI represents a key milestone in delivering a fully comprehensive software solution for modeling and simulation to the life science community.” He added: “We have been working closely with Ursula Kummer’s group at EML Research to deliver an open-source software package that aids in the understanding of cellular and molecular behavior and which facilitates the quantitative interpretation of modern experiments. COPASI is the culmination of six years of intense development work to deliver a package that meets the real needs of life scientists. The future development of COPASI will continue to strive towards providing a powerful package that every biologist can use, not just experts in systems biology.”

COPASI simplifies the task of model building by assisting the user in translating the language of chemistry (reactions) to mathematics (matrices and differential equations). The user-friendly interface is combined with a set of sophisticated numerical algorithms that assure the results are obtained quickly and accurately. COPASI simulates the kinetics of systems of biochemical reactions and provides a number of tools to fit models to data, optimize any function of the model, perform metabolic control analysis and linear stability analysis.

Dr. Ursula Kummer, Principal Investigator at EML Research, commented: “Simulation and modeling are becoming increasingly important tools in systems biology research and can be used to test the physical and chemical limitations as well as feasibility of a wide range of biochemical reactions. We anticipate that COPASI will prove invaluable to researchers not only in simulating increasingly complex networks but also in helping to understand how external factors, for example drugs, impact metabolic systems.” She added: “We have already seen many applications from our existing user community and expect many more due to COPASI’s inherent flexibility for top-down and bottom-up modeling.”

Sven Sahle | alfa
Further information:
http://www.eml-research.de
http://www.copasi.org

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>