Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient human fossils find modern virtual home

07.06.2006


First discovered 150 years ago, Neanderthals have been studied more widely than any other form of human. Thanks to a new interactive inventory and online catalogue developed in Europe, scientists worldwide can now probe the secrets of this primitive relative from the comfort of their computer.



Neanderthal humans (Homo neanderthalensis) was once common throughout Europe, but died out some 30,000 years ago. Since the discovery of Neanderthal remains in Düsseldorf, Germany in 1856, archaeologists have unearthed its fossils at dozens of different excavation sites, including those in Croatia, Belgium, France and Germany.

“These extensive finds explain why most of the scientific analysis of human evolution has been done on Neanderthals,” says Heinz Cordes, coordinator of the IST project TNT, which stands for The Neanderthal Tools.


After 24 months of work, the project partners have set up the world’s leading scientific network on Neanderthal research. Called the Neanderthal Studies Professional Online Service (NESPOS), it contains an impressive and growing collection of texts and digitised Neanderthal remains such as skulls, teeth and tools.

“Our database now includes 60 per cent of the major excavation sites, 800 human fossil items from 35 archaeological sites and 200 specimens provided by third parties cooperating with the project,” says Cordes of TNT’s core application.

The recently created NESPOS Society is taking over all of the project results and will run the project-developed software and offer it to others. All scientists joining NESPOS can use this professional Wiki-based collaboration platform that allows users to add and edit content collectively. Students and universities are offered free access, though only members of the society can visit every part of the platform.

Before the project started, the partners had to convince scientists and museum curators to share all their knowledge of Neanderthals. Once this was done and formats for the database were agreed, digitisation could begin. This meant scanning artefacts at the highest resolution possible, using portable devices and CT (computerised tomography) machines of the kind found in hospitals.

“For example, some 300 pieces were scanned at the famous Croatian excavation site in Krapina. This was done at high resolution in STL and X3D [format] for the polygonal scans, as well as DICOM, TIFF and PNG [format ] for the CT scans,” says Cordes.

The partners then created virtual-archaeology software tailored for Neanderthal scientists. VISICORE, as it is known, is separate from the database. The suite allows users to visualise and analyse the scans in numerous ways, in both two and three dimensions.

“With our software, the sliced images created by the CT scanner can be twisted and turned in any direction on screen,” says Cordes. Scientists may explore bones and other artefacts in tremendous detail, paving the way for new discoveries – yet without touching or damaging the original items.

“VISICORE could also interest scientists outside of the Neanderthal community,” notes Cordes. “The NESPOS Society is already offering it to dinosaur, archaeology and medicine professionals. The suite’s sophisticated tools could be of use to anyone who has to measure and compare high-tech scans.”

NESPOS has opened a new area of scientific work, believes Cordes. “Older scientists working in the fields of palaeoanthropology and archaeology tend to be excavation specialists and focus on the physical side of their work,” he says. “But they too are beginning to realise the value of this new database, such as when examining artefacts in detail on a computer screen.” The virtual-exhibition features of NESPOS also demonstrate how museums can manage and display their scientific collections to the public.

Dissemination partner National Geographic has featured the project on ArchChannel, its cultural-heritage publications and internet portal. To date, ArchChannel has presented the TNT’s scientific results in its German-language monthly magazine and produced a linked special edition on mankind’s evolution.

Looking ahead, Cordes highlights the importance of offering free access to the project’s tools: “Young scientists in the Neanderthal field benefit, since this access saves money on travel and opens up what was once a fairly closed community.”

Some of project partners are currently working with the Max Planck Institute in Leipzig, Germany – not originally a project partner but now a NESPOS member – on mobile scans. Moreover, the NESPOS Society is working with the European Virtual Anthropology Network (EVAN) to spawn a new generation of researchers familiar with virtual scientific-collaboration tools.

Tested extensively in workshops across Europe, the open-source VISICORE suite is to be commercialised through NESPOS. The database may also generate spin-offs, since the creator, PXP Software, intends to market its expertise on creating such an application.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/82290

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>