Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Audio DNA’ ensures sound approach to classification

08.02.2006


Until E! 2668 AUDIOCLAS, there was no method to automatically classify audio and musical sound effects. This EUREKA project has resulted in an objective sound-effect classification system that should provide a major boost to European film, video and audio production. The software system makes it possible to speed access to major sound-effect libraries and simplify synthesis of new or combined sound effects from the stored data. Audio DNA is used to identify sounds similar in nature, such as door slams. This classification and taxonomy of sounds is an innovative new approach that is already being used to provide web access to a range of commercial sound-effect libraries for both professional and domestic use in Europe.



The AUDIOCLAS project set out to establish an ‘audio DNA’ classification system, based on the decomposition of a sound effect into several thousand finite elements. With sound effects playing a key role in film, video and audio productions, many film companies and post-production houses rely on sound-effect libraries to avoid the expense of creating specific individual sound effects. And a growing number of home video makers are discovering the creative possibilities of using such libraries too. Close co-operation between a leading UK post-production facility and a Spanish university audiovisual studies department led to the development of a fully automated approach to sound categorisation. AUDIOCLAS resulted in a software-based tool that makes it possible to catalogue sounds quickly, logically and automatically. Indeed, sound effects held within the library have already been used in the two US-produced Shrek films. Searches can now be carried out using key words or by playing a sound and asking the system to find similar effects.

Finding the way around


Having the sound-effect library is not enough. Existing sounds in such libraries are often digitised and classified manually, a problem faced by the Tape Gallery post-production house when it acquired ten million items, dating as far back as the 1940s in some cases, along with an arduous mechanical card file index system. So finding an efficient way around these huge quantities of effects was essential. As computerising the whole library using manual classification could have taken two people up to 20 years — a more effective alternative needed to be found.

The company sought technical assistance to develop an automated system through the EUREKA AUDIOCLAS project with the help of veteran EUREKA projects consultant Peter Stansfield of Wavecrest Systems. “It is fairly easy to organise lists of names and addresses using a computer,” points out Stansfield. “But what do you do about sounds? You can sort on length of clip but how do you tell which are the bangs, which are the squeaks?” The key advance in AUDIOCLAS is not matching sounds exactly, but using the audio DNA to identify similar sounds such as all the door slams. It is this classification and taxonomy of sounds that is the real innovation.

A global first

“Tape Gallery is already using the system to speed access to sound effects for its own use. And the results are being built into a new web system for commercial sound-effects supplier Sound Effects Library, enabling sounds to be previewed and selected directly on line,” says Stansfield. The tool will also be licensed to other libraries, once it has been demonstrated fully.

“This is a global first – US systems depend on interpretation of a range of emotive key words that are difficult to translate linguistically,” he claims. This audio retrieval and generation facility should also lead to an increased take-up of European facilities, meaning more film and video work coming from the USA to Europe. And the university will receive licence fees for use of its technology. “EUREKA proved to be the ideal vehicle for this project, offering a ‘low maintenance, low overhead’ approach to collaboration”, adds Stansfield.” And we benefited from access to the whole EUREKA Network.”

Catherine Shiels | alfa
Further information:
http://www.eureka.be/files/:1320838

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>