Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Still shellfish after 425 million years: Clam-like creature preserved perfectly in ancient fossil

18.08.2005


An ancient shellfish not seen for 425 million years is recreated in vivid 3D images published today, following a unique fossil find in the UK.



The ’articulate brachiopod’ fossil, found in a quarry in Herefordshire, England, is the first of its kind to be preserved with its soft parts intact in 3D. It was discovered by Dr Mark Sutton of Imperial College London, who reveals the structure of the clam-like organism using a 3D colour computer model in this week’s Nature.

Showing the internal structure of the brachiopod as well as the stalk and rootlets that kept it tethered in place, the model gives a unique insight into the workings of the ancient shellfish.


Dr Mark Sutton, a lecturer in the Department of Earth Science and Engineering, who discovered the fossil alongside colleagues at the Universities of Yale, Oxford and Leicester, said: "This is a significant discovery because it is something we never dared to dream we might see - an ancient fossil articulate brachiopod with its fleshy parts intact, and preserved in three-dimensions to boot.

"Up to now, in all the millions of articulate brachiopod fossils scientists have examined, no-one has ever found anything except empty shells. This fossil helps us understand one of the most common creatures to have lived in the ancient oceans of the world," adds Dr Sutton, who gave the fossil the Latin name Bethia serraticulma after his wife Bethia.

The find has challenged the assumption that ancient brachiopods were put together in the same way as their modern descendents. The ancient model is unusual because its rootlets are physically tied onto a stick-like object on the sea-floor, most likely to be debris from a dead sea-lily. Some modern brachiopods have rootlets, but they spread out into soft sediment, just as plant roots do.

"Those brachiopods that stick to a hard object do it chemically, rather than tying themselves on," explains Dr Sutton. "Bethia’s stalk is also much chunkier than in any modern brachiopod, and has strange ridges on it. It clearly didn’t work in the same way at all. You can also see baby brachiopods attached with their stalks and the main fossil has filaments of its feeding organ," he adds.

This fossil is the latest in a series of spectacularly well-preserved creatures from the Herefordshire site that Sutton and his colleagues have unearthed over the last few years. The team anticipates that many more important finds are yet to emerge.

The model was created by shaving away the rock encasing the fossil layer by layer. Scientists then photographed each layer, reducing the fossil to dust, but converting it into a high-fidelity 3D ’virtual fossil’ that can be viewed and manipulated on computer.

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>