Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record 10.4 Gigabit wireless transmission

21.06.2005


Researchers at the University of Essex are claiming a world record for the amount of computer data sent over a point-to-point wireless channel.

The results achieved by the team from the Department of Electronic Systems Engineering are the equivalent of more than 162,000 phone calls or over 10,000 broadband internet connections being made simultaneously. Such large capacity could revolutionise wireless internet download times for many households and local businesses, small and large.

While the techniques used by the Essex group don’t fit exactly to the MultiBand Alliance template in the IEEE (Institute of Electrical and Electronics Engineers) 802.15 ultra-wideband radio standardisation process, they are important because they show that 10 Gigabit radio is feasible. The successful experiment at Essex demonstrates that far greater capacity could be obtained from present generation wireless links given appropriate standardisation.



The Essex Department of Electronics Systems Engineering is one of the strongest in the country, and currently has a grade 5 rating for carrying out research of national and international excellence. In 2001, researchers in the department achieved a world record for the amount of computer data sent over a single multimode optical fibre, which won them a slot in the Guinness Book of Records.

The latest record-breaking results came at the end of a two-year project by MSc student Terry Quinlan, part of precursor work which will be further enhanced by a recently-announced £1 million Higher Education Funding Council for England equipment award. Eventually, the mm-wave region could be used where even higher data rates may be possible.

Head of the Essex project, Professor Stuart Walker, said: ’This achievement represents the culmination of many months of painstaking work. Multigigabit transmission systems of any sort require really detailed design and wireless is no exception. The original aim was just to investigate the performance of cheap flat patch antennas. We were pleasantly surprised by the initial results and kept on improving the experimental set-up.

’This is a research-lab point-to-point experiment but there is world-wide commercial interest in getting multigigabit capacity from inexpensive wireless systems, either fixed or mobile.’

The Essex team succeeded in transmitting 10.4 Gigabits (that’s 10.4 billion, or 104 followed by 8 zeroes) of data over a 60m line-of-sight span; this distance being typical of the urban distribution point to home environment in the UK. Greater distances should be possible and are the subject of further investigation.

The experiments were carried out using an array of three in-house designed patch antennas covering a band from just below 2 GHz up to just above 7 GHz. The 10.4 gigabit date rate was comprised of concurrent 1.2, 1.6 and 2.4 Gigabit channels combined with polarisation-based frequency reuse. A complete carrier and data synchronisation subsystem was also constructed so largely error-free performance could be demonstrated.

A paper on the basic subsystem design was presented at the IEE (Institution of Electrical Engineers) and IEEE-sponsored Antennas and Propagation Conference at Loughborough University in April 2005.

Prof. Stuart Walker | alfa
Further information:
http://www.essex.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>