Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The promise of personalized medicine

08.09.2004


A new technology developed by scientists at IBM could bring the promise of personalized medicine one step closer to reality.

Using a basic computer language, the researchers created a "smart" DNA stream that contains a patient’s entire medical record, according to a report in the upcoming Oct. 11 print edition of the Journal of Proteome Research, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The report was published online July 22.

With the advent of the genomic revolution, scientists are avidly seeking correlations between human disease and the architecture of individual genes. Parsing this huge amount of data could eventually lead to "personalized medicine," some researchers say, allowing doctors to prescribe the right drug at the right dose for the right person, based on unique variations in their DNA. But to achieve this potential, scientists need a way to store and efficiently transmit whole sequences of patient DNA with built-in privacy -- a hurdle that has yet to be overcome, according to the authors.



Enter IBM’s Genomic Messaging System (GMS). GMS provides a basic computer language that can be inserted into DNA sequences to bridge the gap between patient medical records and genetic information, says lead author of the paper, Barry Robson, Ph.D., a chemist at IBM’s T. J. Watson Research Center in Yorktown Heights, N.Y.

The stream of information transmitted is basically a "smart" DNA sequence containing a patient’s entire medical record in compressed form as well as genetic information. The DNA stream could potentially even house images like MRIs and X-rays. "It is a stream of DNA symbols -- GATTACAGATTACA -- with GMS language inserted at appropriate points," Robson says. The inserted language can be used to annotate the DNA, to link to relevant medical data, and to control the privacy of selected sequences with passwords, among others.

Such a universal medical record could help doctors create individualized prescriptions and treatment regimens, precisely tailored for each patient, Robson predicts. "GMS links archives of digital patient records to enable analysis of those records by a variety of bioinformatic and computational biology tools," says Robson. These tools include data mining to discover unexpected relationships, large-scale epidemiological studies and three-dimensional modeling of patient proteins to study the effect of "SNiPs" -- single nucleotide polymorphisms.

Scattered throughout the human genome are millions of one-letter variations in genetic code known as SNiPs. Most are harmless, but some SNiPs provide crucial information, because they can help pinpoint the location of genes that might influence certain diseases.

GMS also provides platforms for respecting the privacy and security of a patient, including a flexible system of passwords that releases only selected parts of the patient’s DNA sequences to different researchers. And since future applications might include medical emergencies, the system has been designed to continue operation even in the event of a disaster by providing a transient backup.

GMS is still in the early stages of development, but in an initial study it successfully modeled SNiPs in proteins from a real patient record. The test, which is one of the first proofs of a fully automated system for personalized medicine, focused on finding and designing a drug that would regulate the rejection of bone marrow in a transplant patient.

Also in earlier research, Robson and his coworkers demonstrated their system’s ability to mine patient data for interesting correlations, such as the connection between a pancreatitis disease and a scorpion bite.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>