Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The promise of personalized medicine

08.09.2004


A new technology developed by scientists at IBM could bring the promise of personalized medicine one step closer to reality.

Using a basic computer language, the researchers created a "smart" DNA stream that contains a patient’s entire medical record, according to a report in the upcoming Oct. 11 print edition of the Journal of Proteome Research, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The report was published online July 22.

With the advent of the genomic revolution, scientists are avidly seeking correlations between human disease and the architecture of individual genes. Parsing this huge amount of data could eventually lead to "personalized medicine," some researchers say, allowing doctors to prescribe the right drug at the right dose for the right person, based on unique variations in their DNA. But to achieve this potential, scientists need a way to store and efficiently transmit whole sequences of patient DNA with built-in privacy -- a hurdle that has yet to be overcome, according to the authors.



Enter IBM’s Genomic Messaging System (GMS). GMS provides a basic computer language that can be inserted into DNA sequences to bridge the gap between patient medical records and genetic information, says lead author of the paper, Barry Robson, Ph.D., a chemist at IBM’s T. J. Watson Research Center in Yorktown Heights, N.Y.

The stream of information transmitted is basically a "smart" DNA sequence containing a patient’s entire medical record in compressed form as well as genetic information. The DNA stream could potentially even house images like MRIs and X-rays. "It is a stream of DNA symbols -- GATTACAGATTACA -- with GMS language inserted at appropriate points," Robson says. The inserted language can be used to annotate the DNA, to link to relevant medical data, and to control the privacy of selected sequences with passwords, among others.

Such a universal medical record could help doctors create individualized prescriptions and treatment regimens, precisely tailored for each patient, Robson predicts. "GMS links archives of digital patient records to enable analysis of those records by a variety of bioinformatic and computational biology tools," says Robson. These tools include data mining to discover unexpected relationships, large-scale epidemiological studies and three-dimensional modeling of patient proteins to study the effect of "SNiPs" -- single nucleotide polymorphisms.

Scattered throughout the human genome are millions of one-letter variations in genetic code known as SNiPs. Most are harmless, but some SNiPs provide crucial information, because they can help pinpoint the location of genes that might influence certain diseases.

GMS also provides platforms for respecting the privacy and security of a patient, including a flexible system of passwords that releases only selected parts of the patient’s DNA sequences to different researchers. And since future applications might include medical emergencies, the system has been designed to continue operation even in the event of a disaster by providing a transient backup.

GMS is still in the early stages of development, but in an initial study it successfully modeled SNiPs in proteins from a real patient record. The test, which is one of the first proofs of a fully automated system for personalized medicine, focused on finding and designing a drug that would regulate the rejection of bone marrow in a transplant patient.

Also in earlier research, Robson and his coworkers demonstrated their system’s ability to mine patient data for interesting correlations, such as the connection between a pancreatitis disease and a scorpion bite.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>