Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teragrid’s First Targets Include Galaxy Formation and Pollution Cleanup

17.03.2004


The first computing resources of the National Science Foundation’s (NSF) TeraGrid became fully available for scientific use in January, and some of the first applications will be tracking the formation of galaxies in the early universe and finding the most efficient and least expensive ways to clean up groundwater pollution.



Other early TeraGrid (www.teragrid.org) users will study seismic events and analyze biomolecular dynamics on the Linux clusters at the National Center for Supercomputing Applications (NCSA) and the San Diego Supercomputer Center (SDSC). The two clusters together offer 4.5 teraflops (trillions of calculations per second) of computing power and access to more than 250 terabytes of disk storage. Allocations for use of these machines were awarded by the NSF’s Partnerships for Advanced Computational Infrastructure (PACI) last October.

"We are pleased to see scientific research being conducted on the first production TeraGrid clusters," said Peter Freeman, head of NSF’s Computer and Information Sciences and Engineering directorate. "Leading-edge supercomputing capabilities are essential to the emerging cyberinfrastructure, and the TeraGrid represents NSF’s commitment to providing high-end, innovative resources."


NSF’s TeraGrid is a multi-year effort to deploy the world’s largest, most comprehensive distributed infrastructure of computation, information and instrumentation resources for scientific research. Hardware at sites across the country is connected by a 40-gigabit per second backplane—the fastest research network on the planet.

The TeraGrid sites include NCSA at the University of Illinois, Urbana-Champaign; SDSC at the University of California, San Diego; the Center for Advanced Computing Research (CACR) at Caltech; Argonne National Laboratory; and the Pittsburgh Supercomputing Center (PSC). In 2003, NSF made awards to extend the TeraGrid partnership to Indiana University, Oak Ridge National Laboratory, Purdue University and the Texas Advanced Computing Center at the University of Texas at Austin.

In December, NCSA and SDSC installed Linux clusters that will provide an additional 11 teraflops of computing power. The expanded clusters will enter production by June 2004, bringing the combined power of the completed TeraGrid systems to 20 teraflops, including the 6-teraflops, 3,000-processor Terascale Computing System at PSC.

Julie A. Smith | NSF
Further information:
http://www.nsf.gov/od/lpa/news/04/tip040316.htm#third
http://www.teragrid.org

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Did you know that Heraeus PID lamps have been used in the measurement of air quality at the London airport?

02.05.2016 | Power and Electrical Engineering

Heraeus Noblelight at the Drupa 2016

02.05.2016 | Trade Fair News

Climate-exodus expected in the Middle East and North Africa

02.05.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>