Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making 3-D Chips a Reality

01.09.2003


Rensselaer Researchers Pioneer Interconnect Technology that May Take Chips Into 3-D



Researchers led by Ronald J. Gutmann in the Focus Center-New York at Rensselaer (FC-NY-RPI) are pioneering new interconnect technologies that promise to deliver smaller, faster, inexpensive, microelectronics and circuits that function in three dimensions.

Researchers at Rensselaer’s Focus Center-NY for Interconnections for Gigascale Integration believe that a strategy in which several chip wafers are bonded together in 3-D and interconnected provides an effective means to integrate chip technologies, and will dramatically improve performance and function. Working with collaborators from the semiconductor industry and other universities, the Rensselaer team is developing more effective interconnects that will allow information to get where it’s going more quickly and make computing ever faster.


Jian-Qiang “James” Lu, a research associate professor of physics and electrical engineering, presented some of their findings in a paper co-authored with International SEMATECH (Austin, Texas) at the International Interconnect Technology Conference (IITC) in June.

“At Rensselaer, we’re working with others to develop a very promising approach to building vertically integrated (3D) circuits; going up instead of across”, says Lu.

Vertical Bridges to the Next Level

An interconnect is essentially a vertical bridge to another level. But it’s nearly impossible to keep building such bridges in two dimensions, Lu explains, because bridges span a chip similar to the way the Brooklyn Bridge spans the East River.

“It’s a matter of necessity to consolidate space on a chip. Since real estate is dwindling as chip size decreases, the only way to go it seems, is up,” says Lu. “If you’re in a city, like New York for example, and you want to increase and expand the scale of your business, you need to increase real estate, narrow the streets, and build bridges. But New York City is only so big, so you need to build skyscrapers. It’s the same with chips, Rensselaer is attempting to build the information bridges for the chip skyscrapers.”

If you want the signal to travel from one side of the chip to the other, there will be a delay because the global circuit wire is so long in 2-D (typically travel is 10,000 microns). One simple solution to interconnectivity is to cut that large chip to several small chips, then stack and connect them vertically. By cutting and stacking interconnects you can slash that global travel distance to 10 microns or less (chip-to-chip).

Damascene Processing

To make and interconnect 3-D chips, Lu explains Rensselaer’s process of effectively bonding wafers together face-to-face. After bonding and thinning the top wafer, inter-wafer interconnects are formed using the industry standard “damascene” processing. This process includes drilling a hole using dry etching, filling it with copper (the industry standard material), and polishing away extra copper define the metal lines that will carry signals around the “stacked-chip” product. Gutmann was a leader in developing this damascene process for defining metal lines. This damascene interconnect formation process, combined with wafer alignment, bonding and thinning, can be repeated for the third wafer, says Lu.

"We’re developing monolithic wafer-level 3-D integration processes that potentially can achieve all the advantages of system-on-a-chip and system-in-a-package, while lowering cost, enabling the use of small form factors and achieving high performance," Lu said.

Hyper-Integration

Further advancements and benefits of such a system on a 3-D chip are that each layer can be optimized for any given technology, meaning in one 3-D chip you could integrate (hyper-integrate) terahertz technology, mixed signal processing, wireless and optical systems.

“Mixing the systems on a 3-D chip will enable technology for future chips to be low-cost and will also allow nanoelectronic, opto-electronic, and biochemical circuits to be integrated into heterogeneous systems,” says Lu. Several RPI faculty members lead design, modeling and applications-oriented efforts that support different aspects of this fairly large effort.

Also, the development cycles of various technologies using 3-D technology can be combined which compresses manufacturing time. Currently the cycles are dependant upon each other on a 2-D chip. With 3-D technology you can pick off-the-shelf technologies and plug them in, manipulating each layer separately and optimizing it to the needs of the user, explains Lu.

About Rensselaer’s Focus Center

The Focus Center-New York, Rensselaer is led by Timothy S. Cale, professor of chemical engineering, and is part of the Interconnect Focus Center (IFC): Interconnections for Gigascale Integration, that focuses on interconnects. The IFC is part of the SIA/DARPA driven Focus Center Research Program (FCRP), and focuses on the discovery and invention of new solutions that will enable the U.S. semiconductor industry to transcend known limits on interconnects that would otherwise decelerate or halt the rate of progress toward gigascale integration. The IFC officially started in October of 1998, and is headquartered at Georgia Institute of Technology. Other universities involved in the IFC, in addition to Rensselaer, include Massachusetts Institute of Technology, Stanford University, State University of New York at Albany, and the University of California, Los Angeles. The New York universities form the FC-NY, which is headquartered at SUNY Albany.

Technical Contacts: Tim Cale, Director, Focus Center-NY, Rensselaer:
Interconnections for Gigascale Integration
(518) 276-8676 or calet@rpi.edu
http://banyan.cie.rpi.edu/~cale/

James Lu, Research Associate Professor of Physics
(518) 276-2909 or luj@rpi.edu
http://www.rpi.edu/~luj


Theresa Bourgeois | Rensselaer News
Further information:
http://banyan.cie.rpi.edu/~cale/
http://www.rpi.edu/~luj

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>