Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airfare analyzer could save big bucks by advising when to buy tickets

02.04.2003


’Hamlet’ algorithm answers the question: ’To buy, or not to buy?’



It’s a classic dilemma for air travelers in today’s world of wildly varying ticket prices – should you purchase now if the rate seems reasonable, or wait for a better deal and take the risk that the price will go up?

Researchers at the University of Washington and the University of Southern California appear to have taken out some of the uncertainty with a new computer program that approaches a 90 percent score in saving money by predicting air fares.


"If you’re on an airplane and look around at your fellow passengers, probably every single person on that plane has paid a different price," said Oren Etzioni, associate professor in the Department of Computer Science & Engineering in the UW’s College of Engineering. On one flight studied, the ticket price varied by more than $2,000, depending on when the purchase was made.

"It’s the same product, but people are paying radically different prices," he said. "So ’to buy or not to buy’ is the question – that’s why we named our program ’Hamlet.’"

Initial testing indicates that Hamlet does a good job of edging things toward the consumer’s side of the equation.

During a 41-day pilot run, the algorithm saved 607 simulated passengers a total of $283,904 on airline fares by advising when to buy and when to postpone purchases. If one could predict the future and had perfect knowledge of how the ticket prices would vary, the greatest possible savings was $320,572. That means Hamlet’s savings were 88.6 percent of optimal.

Put another way, the algorithm saved an average of 27.1 percent per simulated passenger in cases where savings were possible. In a number of cases, savings were not possible because the virtual passenger tried to buy a ticket too close to the departure date. Etzioni and his colleagues at the UW and USC have filed for a patent on the algorithm and the approach.

Airlines are famous for raising and lowering fares in an attempt to maximize revenue. It’s an issue that many service-oriented businesses face. If you have a standing inventory – passenger seats, hotel rooms, rental cars – you want to sell as much of that inventory as possible and may decide to do a promotion if some of it is standing empty. And airlines have become among the most sophisticated users of this so-called "dynamic pricing" to get the most out of their product, using algorithms that are closely guarded as trade secrets to vary pricing.

That leaves the traveler at a distinct disadvantage, Etzioni said.

"The airlines have a bunch of high-powered consultants who work with them to figure out the algorithm in the back room," he said. "We’re looking at this from the consumer’s point of view. Can we help consumers save money?"

To answer that question, Etzioni had to design an algorithm that could accurately predict what the airlines’ algorithms would do, without having access to the information the airlines use to drive their pricing. The key, as it turns out, is the World Wide Web. "That’s really what makes this possible," Etzioni said. "All of the prices are available on the Web now."

Hamlet uses a combination of techniques to find patterns in the variation of prices over time. But before the algorithm could work its predictive magic, the researchers had to gather the data from which Hamlet could "learn."

For that, Etzioni teamed up with Craig Knoblock, a colleague with the Information Sciences Institute at the University of Southern California.

"They have all the machinery for gathering this kind of information on the Web," Etzioni said.

Researchers built a data-mining program to collect pricing information directly from the Web, store it in a database and anticipate price changes. Data mining is the process of discovering patterns by sifting through large volumes of information. For the purposes of the study, the researchers restricted themselves to two non-stop flights – Los Angeles to Boston and Seattle to Washington, D.C. They looked at six airlines on those routes, gathering pricing data every three hours.

In examining how the fares behaved, they found that the price of particular flights changed as often as seven times a day. Over time, the range in prices could be extreme – for one flight on the LA to Boston route, for example, the high was $2,524 for a round trip ticket, compared to a brief low of $275. The high from Seattle to Washington, D.C., was $1,668 compared to a low of $281.

"Look how big those jumps are," Etzioni said. "If you were going from Los Angeles to Boston and could buy in that window when the price dropped, you could save more than $2,000 on the ticket price. The potential savings are huge." While the airlines aren’t likely to welcome Hamlet, Etzioni believes their options for retaliation will be somewhat limited. "We’re looking at prices that are available to people," Etzioni said. "If the airlines start playing with the prices to trick us, they also have the potential of shooting themselves in the foot." In other words, the prices are juggled to maximize profits, and if airlines manipulate them to obfuscate things for algorithms like Hamlet, they are also changing their chance of selling a ticket.

"I would never underestimate the cleverness of another party," Etzioni added. "But their hands are somewhat tied."

Also participating in the research were graduate students Alexander Yates from the UW and Rattapoom Tuchinda from USC.


###
For more information, contact Etzioni at (206) 685-3035 or etzioni@cs.washington.edu. For a copy of a more detailed, scholarly paper on Hamlet, contact Etzioni or Rob Harrill at rharrill@u.washington.edu.


Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>