Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Detect Cyberattacks, New Software System Developed at UB Profiles ’Normal’ Computer Habits

11.10.2002


An early version of a new software system developed by University at Buffalo researchers that detects cyberattacks while they are in progress by drawing highly personalized profiles of users has proven successful 94 percent of the time in simulated attacks.



The "user-level anomaly detection system" was described here today (Oct. 10, 2002) at the military communications conference known as MILCOM 2002.

"We have developed a new paradigm, proactively encapsulating user intent where you basically generate a profile for every single user in the system where security is a major concern," said Shambhu Upadhyaya, Ph.D., associate professor of computer science and engineering at UB and co-author of the paper.


In addition to the paper presentation, MILCOM invited Upadhyaya to give a half-day tutorial on the new intrusion detection system at the meeting.

Upadhyaya directs UB’s Center of Excellence in Information Systems Assurance Research and Education, one of 36 in the U.S. chosen by the National Security Agency to develop new programs to conduct research and train students to protect the nation’s information technology systems from cyberterrorism.

The new UB intrusion detection system is being developed for application in highly secure facilities, such as those in the military.

"Existing approaches look at a past record of computer activity because those systems produce audits of activity for every user," he explained. "Our methodology is a marriage of two known techniques: misuse and anomaly detection. We use an assertion/rule-based approach to precisely capture the initial bracket of activity and then fine-tune this profile to reflect ongoing activity, making highly personalized and accurate profiles possible.

"Also, since users are being constantly monitored, this system can detect intrusions or attacks on-the-fly."

The UB system generates a user profile according to data about standard operations and commands that each user follows to carry out specific tasks.

The system is designed to detect significant deviations from procedures followed by normal users.

While some commercially available computer security packages already feature user-profiling, Upadhyaya noted that they are based on "low-level" methods -- meaning they seek out deviations on the basis of huge amounts of data, so they end up creating many false alarms.

"User modeling is computationally hard," said Upadhyaya. "Since many of these existing systems treat this problem purely statistically, any deviation from the norm is signaled as an anomaly, but it is often the case that an intrusion has not occurred.

"It’s a nuisance because an alarm can go off as often as every five minutes," he said.

By contrast, the system he developed with co-authors Rankumar Chinchani, a doctoral candidate in the UB Department of Computer Science and Engineering, and Kevin Kwiat of the Air Force Research Laboratory in Rome, N.Y., is based on the idea that the computation habits of normal users generally are well-defined and that he or she will work within those bounds.

"The normal behavior of computer users has been very well characterized," said Upadhyaya. "Normal users stick within well-defined parameters. Intruders or hackers, on the other hand, will not be able to carry out their intended operations within such well-defined parameters, and so will make the scope of his or her activities overly permissive," said Upadhyaya. "Our system is based on detecting that kind of behavior."

The key to the UB system’s success and its "scalable" feature is that its monitoring system operates at a high level, examining commands that users execute to perform certain operations. This is in contrast to the low-level monitoring that many existing packages perform, which examine commands as basic as the ones and zeroes of which email messages are composed.

"Our system is looking for a sequence of operations that falls within certain ’normal’ parameters," he explained.

"For example, if you want to make a document, you do certain things in a certain order, you create the document, you use a word processing program, you may run Spellcheck. Our system knows what to look for in the normal sequence that is necessary to accomplish this job. Any deviations from that are assumed to be potential cyberattacks."

The work was funded by the Air Force Research Laboratory in Rome, N.Y.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>