Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe’s next-generation broadband

28.07.2008
An enormous research effort by Europe’s leading broadband players has helped accelerate dramatically the rollout of next-generation broadband services reaching speeds in the 10s of Mbit/s in many European countries. That is just the start.

The deployment of broadband services in the 10s of megabits per second (Mbit/s) is accelerating across the continent, thanks to the research efforts of Europe’s main broadband players. Even 100Mbit/s has become economically feasible and deployments have started.

Two years ago Europe’s leading telecoms, ISP companies, and its top technology vendors and research institutes finished their work on the first phase of the MUSE project. That effort led to a new set of standard specifications for broadband technology branded as the Global System for Broadband (GSB).

“The MUSE project did not start the push for next-generation broadband technologies and services,” notes MUSE project coordinator, Peter Vetter. “Many companies and institutes were working on it already. But MUSE certainly helped to establish a consensus on what it should look like and what it consisted of, and that accelerated the deployment of a new architecture and better access technologies.”

Risk-free roadmap?

By helping to establish standards, and by defining a roadmap that gained industry consensus, the project limited the risks faced by the main stakeholders, and boosted stakeholder confidence. Increased broadband investment is the result.

Already in Belgium, the Netherlands, the UK, Germany and other countries, providers are deploying services with vDSL (Very High Speed Digital Subscriber Line), an access technology that offers up to 100Mbit/s.

“Our project responded to some of the obstacles facing Broadband4All, a major strategic thrust of European policy under the Sixth Framework Programme. There are many elements needed to make Broadband4All a reality, so it took a large integrated approach to tackle all the technical issues,” Vetter reveals.

EU-funded MUSE, which stands for Multi-Service Access Everywhere, tackled those issues. It was a huge project. It had €60 million, half of which was funded by the European Commission, and a research agenda that looked into every aspect of broadband access technology.

Broadband access architectures, access and edge nodes, dsl, fibre optic, fixed wireless, back-end integration, interconnection between public networks and home networks, and generic test suites, are just a few of the issues that the MUSE team looked at.

“There is often misunderstanding; people think we were just looking at improving the access bit-rate, but that aspect of the project accounted for only 20% of our budget. The main challenge was to enable multi-service delivery through an integrated end-to-end approach,” Vetter explains.

Complementary phases

The MUSE project was organised into two, complementary phases of two years each. Phase one focused on the technical architecture for next-generation broadband networks. This architecture was dubbed the Global System for Broadband (GSB) and it is this work that is responsible for the accelerated broadband deployments.

The second phase of the project (developed further in a follow-up story on 28 July: ‘Next-gen broadband at your service’) looked at upgrading this architecture with network intelligence to facilitate the support of fixed-mobile convergence, multimedia and IPTV, or television transmitted via the internet, among others.

While the second phase offered enhanced services and integration, the first phase tackled the fundamental network issues. It was a big job.

“There was an obvious technology already available to improve metro and access networks,” points out Vetter. “It was Ethernet, which was designed for IP networks and promised low cost because it was already widely used in data networks.”

Serious problems

But serious problems existed with the technology. Ethernet was designed for local area networks with trusted users and lacked security when used in a public network. Also the support of Quality of Service (QoS), which is essential to handling multiple services, like voice and video, as well as the internet, a combination of services often referred to as ‘Triple Play’.

“There were some fragments and different approaches out there, responding to some of these problems,” says Vetter. “But the real issue was to develop consensus around a complete solution.”

Thanks to good pre-standardisation studies and consensus building, MUSE made many contributions to the standards at the DSL forum, ETSI-TISPAN, Home Gateway Initiative, and ITU-T, the relevant official standards bodies.

This led to a set of specifications and standards for Ethernet-based metro, access, and home networks with enhanced quality of service, security and bandwidth. Altogether, the architecture is the GSB.

Though the most visible result of this work is the upgrades of DSL networks for Triple Play and their increased deployments, the generic architecture and platform technology apply to all of the main and emerging access technologies, like fixed wireless and optical fibre.

Just the beginning

“Eventually all networks, including cable networks, will evolve to optical fibre, that will be the standard physical technology. And it is already happening: fibre is deployed in France, Sweden and other countries. But in the meantime, the most widespread technologies, DSL and fixed wireless, can move to GSB.”

And this is just the beginning. The fundamental architecture is in place with MUSE phase I finished in February 2006. Now phase II has started with the intention of developing the enhanced services enabled by the GSB architecture.

But two years after completion of the first phase, its results are already responsible for faster, better broadband near you, sooner than anyone expected.

This article is part one of a two-part feature on MUSE.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>