Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe’s next-generation broadband

28.07.2008
An enormous research effort by Europe’s leading broadband players has helped accelerate dramatically the rollout of next-generation broadband services reaching speeds in the 10s of Mbit/s in many European countries. That is just the start.

The deployment of broadband services in the 10s of megabits per second (Mbit/s) is accelerating across the continent, thanks to the research efforts of Europe’s main broadband players. Even 100Mbit/s has become economically feasible and deployments have started.

Two years ago Europe’s leading telecoms, ISP companies, and its top technology vendors and research institutes finished their work on the first phase of the MUSE project. That effort led to a new set of standard specifications for broadband technology branded as the Global System for Broadband (GSB).

“The MUSE project did not start the push for next-generation broadband technologies and services,” notes MUSE project coordinator, Peter Vetter. “Many companies and institutes were working on it already. But MUSE certainly helped to establish a consensus on what it should look like and what it consisted of, and that accelerated the deployment of a new architecture and better access technologies.”

Risk-free roadmap?

By helping to establish standards, and by defining a roadmap that gained industry consensus, the project limited the risks faced by the main stakeholders, and boosted stakeholder confidence. Increased broadband investment is the result.

Already in Belgium, the Netherlands, the UK, Germany and other countries, providers are deploying services with vDSL (Very High Speed Digital Subscriber Line), an access technology that offers up to 100Mbit/s.

“Our project responded to some of the obstacles facing Broadband4All, a major strategic thrust of European policy under the Sixth Framework Programme. There are many elements needed to make Broadband4All a reality, so it took a large integrated approach to tackle all the technical issues,” Vetter reveals.

EU-funded MUSE, which stands for Multi-Service Access Everywhere, tackled those issues. It was a huge project. It had €60 million, half of which was funded by the European Commission, and a research agenda that looked into every aspect of broadband access technology.

Broadband access architectures, access and edge nodes, dsl, fibre optic, fixed wireless, back-end integration, interconnection between public networks and home networks, and generic test suites, are just a few of the issues that the MUSE team looked at.

“There is often misunderstanding; people think we were just looking at improving the access bit-rate, but that aspect of the project accounted for only 20% of our budget. The main challenge was to enable multi-service delivery through an integrated end-to-end approach,” Vetter explains.

Complementary phases

The MUSE project was organised into two, complementary phases of two years each. Phase one focused on the technical architecture for next-generation broadband networks. This architecture was dubbed the Global System for Broadband (GSB) and it is this work that is responsible for the accelerated broadband deployments.

The second phase of the project (developed further in a follow-up story on 28 July: ‘Next-gen broadband at your service’) looked at upgrading this architecture with network intelligence to facilitate the support of fixed-mobile convergence, multimedia and IPTV, or television transmitted via the internet, among others.

While the second phase offered enhanced services and integration, the first phase tackled the fundamental network issues. It was a big job.

“There was an obvious technology already available to improve metro and access networks,” points out Vetter. “It was Ethernet, which was designed for IP networks and promised low cost because it was already widely used in data networks.”

Serious problems

But serious problems existed with the technology. Ethernet was designed for local area networks with trusted users and lacked security when used in a public network. Also the support of Quality of Service (QoS), which is essential to handling multiple services, like voice and video, as well as the internet, a combination of services often referred to as ‘Triple Play’.

“There were some fragments and different approaches out there, responding to some of these problems,” says Vetter. “But the real issue was to develop consensus around a complete solution.”

Thanks to good pre-standardisation studies and consensus building, MUSE made many contributions to the standards at the DSL forum, ETSI-TISPAN, Home Gateway Initiative, and ITU-T, the relevant official standards bodies.

This led to a set of specifications and standards for Ethernet-based metro, access, and home networks with enhanced quality of service, security and bandwidth. Altogether, the architecture is the GSB.

Though the most visible result of this work is the upgrades of DSL networks for Triple Play and their increased deployments, the generic architecture and platform technology apply to all of the main and emerging access technologies, like fixed wireless and optical fibre.

Just the beginning

“Eventually all networks, including cable networks, will evolve to optical fibre, that will be the standard physical technology. And it is already happening: fibre is deployed in France, Sweden and other countries. But in the meantime, the most widespread technologies, DSL and fixed wireless, can move to GSB.”

And this is just the beginning. The fundamental architecture is in place with MUSE phase I finished in February 2006. Now phase II has started with the intention of developing the enhanced services enabled by the GSB architecture.

But two years after completion of the first phase, its results are already responsible for faster, better broadband near you, sooner than anyone expected.

This article is part one of a two-part feature on MUSE.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>