Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving learning a personal touch

21.07.2008
A learning system that adapts to the abilities and needs of students opens the way to a more personalised approach in delivering education electronically.

The use of the web as a teaching medium has not had the success that many had hoped it would. Universities around the world have placed much of their teaching online, accessible from their websites. Many open and distance learning institutions are relying heavily on the web as a means of distributing teaching material to students working at home.

Yet somehow reading a computer screen and interacting with software is not the same as studying in a classroom or a laboratory and e-learning has had a mixed reception.

“The problem is that such an approach is technology driven,” says Pierluigi Ritrovato of the Research Centre in Pure and Applied Mathematics (CRMPA) near Salerno, Italy. “The web is a wonderful tool for delivering content so people imagine that this technology is suitable for e-learning. So all the efforts have been going into producing some content and then finding technological solutions for delivering it.”

A second, subtler problem is that the teaching content itself contains assumptions about the kind of person the student is and what kind of teaching approach is appropriate. The student or distance teacher is not able to adapt easily the contents to the needs of the student.

What e-learning software has overlooked until now is that no two students are the same. They have different backgrounds, different learning styles and different approaches to learning. A technological medium that ‘delivers’ the same material in the same way to every student is bound to fail.

Models of learning

European researchers in the EU-funded project ELeGI (European Learning Grid Infrastructure) decided to take a new approach to e-learning. They designed key network software designed around models of how people learn.

Ritrovato, who is one of the project’s scientific coordinators, cites the example of people who want to learn a programming language.

“I might like to work with experiments while others are more interested in reading and understanding, or doing exercises or perhaps by a ‘learning by doing’ approach,” he says. “The learning model is general enough to take all these aspects into account in a comprehensive way.”

The consortium of universities and research centres involved in the project pursued two research lines. On one hand, researchers focused on formal learning such as in educational institutions. On the other, they researched methods of informal learning through collaboration and conversational approaches.

The learning platform developed by the ELeGI team can automatically be tailored to the different needs of students, and can also adapt rapidly in the way it can access teaching resources through a ‘grid’ of networked computers.

If a teacher decides that the students would benefit by collaborative working, the ELeGI platform can find suitable software, perhaps a wiki, locate a machine to run it on, set it up for the group of students and set them to work in an automatic and transparent way.

The ELeGI software can group students who share similar learning styles. It can also recognise when a student is having difficulty and can offer a ‘mini-course’ of remedial work, generated according to the student’s profile and preferences.

Intelligent web teacher

A number of pilot studies and demonstrators have shown how the ELeGI platform could work in practice. The studies include a series of ‘virtual scientific experiments’, mainly in physics. In the studies, students learn from a simulated experiment.

The researchers also designed several demonstrations related to collaborative working and designed a system to automate assessments of students’ work. As part of the programme, the researchers also launched EnCOrE, a net-based encylopaedia of organic chemistry.

“In terms of outcome we have the model for creating adaptive and personalised learning experience, the ELeGI software infrastructure, that is based on grid technology,” says Ritrovato. “It can be considered the first example of a service-oriented infrastructure for learning.”

Insights gained through ELeGI, particularly in formal learning, have been incorporated into Intelligent Web Teacher (IWT), a software platform for distance learning that has been developed over many years with support from several other EU-funded projects.

IWT is marketed by MoMA, a spin-off from the Pole of Excellence in Learning and Knowledge, a virtual research organisation based at Salerno University and which includes several ELeGI partners.

The project demonstrated that it is possible to create a highly personalised learning experience in a dynamic way taking into account the user’s reaction, preferences and the pedagogical aspects,” Ritrovato says

“It is now clear in the community that the existing learning management systems are out of date,” he adds. “They have to change their approach to learning and to be much more user-driven instead of content-driven. This is one of the key features that IWT and ELeGI have been developing. The teacher should be a guide, a support for the student in their learning process.”

The project, which lasted for 41 months and received funding from the EU's Sixth Framework Programme for research, came to an end in June 2007.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89876

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>