Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean satellite launch critical to Australian science

24.06.2008
A new earth observing satellite being launched in California today will help guide future Australian ocean and climate science.

Jason-2, or the Ocean Surface Topography Mission (OSTM), is a joint venture between NASA's Jet Propulsion Laboratory, the US National Oceanic and Atmospheric Administration (NOAA), the French Space Agency (CNES) and the European Meteorology Satellite service (EUMETSAT).

"There's plenty resting on this satellite in terms of where our ocean and climate science is going," says Dr David Griffin, an oceanographer from the CSIRO Wealth from Oceans National Research Flagship and a member of the international Science Team which advises on satellite altimeter missions.

"Jason-2 provides a lifeline between space and some very significant science projects that are integral to our capabilities in understanding how the oceans are changing and particularly future ocean forecasting products," he says.

With an orbit 1336 kilometres above the Earth’s surface, Jason-2 will be one of three satellites equipped with special altimetry sensors to precisely measure sea level, and indirectly infer ocean heat content changes.

This information is also important for: Australia’s evolving ocean forecasting system, BLUElink; sea safety and offshore oil and gas operations; measuring global sea level rise; tracking large-scale ocean-atmosphere phenomena like El Niño and La Niña and marine mammals feeding in nutrient-rich ocean eddies; and forecasting currents for sports events such as the Sydney-Hobart yacht race.

“Jason-2 provides a lifeline between space and some very significant science projects that are integral to our capabilities in understanding how the oceans are changing and particularly future ocean forecasting products,"

he says.High quality satellite altimetry started with the TOPEX/Poseidon mission (1992-2005), and continued with Jason-1 (2001-to the present). The altimeters measure sea surface height, from which we can estimate the strength and direction of ocean currents and also map sea level rise.

Australian scientists contribute to the science mission in a number of ways, including calibration of the sensors on board the satellite. CSIRO Marine and Atmospheric Research, in conjunction with the University of Tasmania, the Bureau of Meteorology’s National Tidal Centre and Geoscience Australia has been running a calibration facility at Burnie (NW Tasmania) since 1992. This was enhanced by the deployment of a French transportable Satellite Laser Ranging (SLR) system at Burnie earlier this year. Burnie is the only absolute calibration site in the Southern Hemisphere. The other two main sites are off the coast of California, and in the Mediterranean Sea.

The satellite will provide 95 per cent coverage of the world's ice-free oceans, repeating its coverage every 10 days and measuring sea surface height with an accuracy of about 3 centimetres.

Australian science agencies using data from the new satellite include the Centre for Australian Weather and Climate Research – a partnership of CSIRO and the Bureau of Meteorology – and the Antarctic Climate and Ecosystem Cooperative Research Centre.

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>