Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jaguar Upgrade Brings ORNL Closer to Petascale Computing

Upgrades to Oak Ridge National Laboratory’s Jaguar supercomputer have more than doubled its performance, increasing the system’s ability to deliver far-reaching advances in climate studies, energy research, and a wide range of sciences.

The system recently completed acceptance testing, running applications in climate science, quantum chemistry, combustion science, materials science, nanoscience, fusion science, and astrophysics, as well as benchmarking applications that test supercomputing performance.

The Jaguar system, a Cray XT4 located at ORNL’s National Center for Computational Sciences, now uses more than 31,000 processing cores to deliver up to 263 trillion calculations a second (or 263 teraflops).

“The Department of Energy’s Leadership Computing Facility is putting unprecedented computing power in the hands of leading scientists to enable the next breakthroughs in science and technology,” said ORNL Director Thom Mason. “This upgrade is an essential step along that path, bringing us ever closer to the era of petascale computing [systems capable of thousands of trillions of calculations per second].”

Jaguar was among the most powerful computing systems within DOE’s Office of Science even before the recent upgrade and has delivered extraordinary results across a broad range of computational sciences.

“The leadership capability at Oak Ridge has been delivering real scientific results,” said Michael Strayer, associate director for advanced scientific computing research in the DOE Office of Science. “Benoît Roux of the University of Chicago used Jaguar to simulate in unprecedented detail the voltage-gated potassium channel, a membrane protein that responds to spikes of electricity by changing shape to allow potassium ions to enter a cell. This work has the potential to help us understand and control certain forms of cardiovascular and neurological disease.”

Climate scientists are calculating the potential consequences of greenhouse gas emissions and the potential benefits of limiting these emissions. Combustion scientists are modeling the most efficient designs for engines that use fossil fuels and biofuels. Fusion researchers are using the system to lead the way toward a clean and plentiful source of electricity. Physicists are exploring the secrets of the universe, illuminating its most elusive mysteries. And materials scientists are searching for the next revolution in technology.

“This is an important advancement,” said Thomas Zacharia, ORNL associate laboratory director for computing and computational sciences. “Leading researchers need many orders of magnitude more computing power and infrastructure than we can yet provide, and they have shown us how they will use these new resources, whether it be to predict the consequences of climate change at the regional level, design new materials with predetermined properties, discover new chemical catalysts, explore more efficient ways to manufacture biofuels, or simulate all important aspects of new reactor designs.”

"The U.S. Department of Energy and its Oak Ridge National Laboratory have been making huge strides in providing more and more simulation capabilities to advance some of the world’s most important scientific and engineering research—and invaluable partners with Cray to push the leading edge of supercomputing,” said Peter Ungaro, president and CEO of Cray. “This upgrade is another big milestone in leadership computing and we, along with many others around the world, are looking forward to learning about the scientific breakthroughs that are borne as a result of this powerful new computing capability.”

With its new power, Jaguar will be able to double its contribution to DOE’s Innovative and Novel Computational Impact on Theory and Experiment program, which is revolutionizing key areas of science by facilitating the world’s most challenging computer simulations. The NCCS will host 30 INCITE projects in 2008 from universities, private industry, and government research laboratories, contributing more than 140 million processor hours on Jaguar.

Leo Williams | newswise
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>