Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jaguar Upgrade Brings ORNL Closer to Petascale Computing

19.05.2008
Upgrades to Oak Ridge National Laboratory’s Jaguar supercomputer have more than doubled its performance, increasing the system’s ability to deliver far-reaching advances in climate studies, energy research, and a wide range of sciences.

The system recently completed acceptance testing, running applications in climate science, quantum chemistry, combustion science, materials science, nanoscience, fusion science, and astrophysics, as well as benchmarking applications that test supercomputing performance.

The Jaguar system, a Cray XT4 located at ORNL’s National Center for Computational Sciences, now uses more than 31,000 processing cores to deliver up to 263 trillion calculations a second (or 263 teraflops).

“The Department of Energy’s Leadership Computing Facility is putting unprecedented computing power in the hands of leading scientists to enable the next breakthroughs in science and technology,” said ORNL Director Thom Mason. “This upgrade is an essential step along that path, bringing us ever closer to the era of petascale computing [systems capable of thousands of trillions of calculations per second].”

Jaguar was among the most powerful computing systems within DOE’s Office of Science even before the recent upgrade and has delivered extraordinary results across a broad range of computational sciences.

“The leadership capability at Oak Ridge has been delivering real scientific results,” said Michael Strayer, associate director for advanced scientific computing research in the DOE Office of Science. “Benoît Roux of the University of Chicago used Jaguar to simulate in unprecedented detail the voltage-gated potassium channel, a membrane protein that responds to spikes of electricity by changing shape to allow potassium ions to enter a cell. This work has the potential to help us understand and control certain forms of cardiovascular and neurological disease.”

Climate scientists are calculating the potential consequences of greenhouse gas emissions and the potential benefits of limiting these emissions. Combustion scientists are modeling the most efficient designs for engines that use fossil fuels and biofuels. Fusion researchers are using the system to lead the way toward a clean and plentiful source of electricity. Physicists are exploring the secrets of the universe, illuminating its most elusive mysteries. And materials scientists are searching for the next revolution in technology.

“This is an important advancement,” said Thomas Zacharia, ORNL associate laboratory director for computing and computational sciences. “Leading researchers need many orders of magnitude more computing power and infrastructure than we can yet provide, and they have shown us how they will use these new resources, whether it be to predict the consequences of climate change at the regional level, design new materials with predetermined properties, discover new chemical catalysts, explore more efficient ways to manufacture biofuels, or simulate all important aspects of new reactor designs.”

"The U.S. Department of Energy and its Oak Ridge National Laboratory have been making huge strides in providing more and more simulation capabilities to advance some of the world’s most important scientific and engineering research—and invaluable partners with Cray to push the leading edge of supercomputing,” said Peter Ungaro, president and CEO of Cray. “This upgrade is another big milestone in leadership computing and we, along with many others around the world, are looking forward to learning about the scientific breakthroughs that are borne as a result of this powerful new computing capability.”

With its new power, Jaguar will be able to double its contribution to DOE’s Innovative and Novel Computational Impact on Theory and Experiment program, which is revolutionizing key areas of science by facilitating the world’s most challenging computer simulations. The NCCS will host 30 INCITE projects in 2008 from universities, private industry, and government research laboratories, contributing more than 140 million processor hours on Jaguar.

Leo Williams | newswise
Further information:
http://www.ornl.gov/news

More articles from Information Technology:

nachricht Who can find the fish that makes the best sound?
28.02.2017 | Technische Universität Wien

nachricht Many Android password managers unsafe
28.02.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>