Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tool aims to revolutionise scheduling meetings

Advanced-thinking scientists are looking beyond the internet at platforms in cyberspace in order to discover new ways of connecting people for work-based projects.

An international EU-funded initiative aims to deliver new systems that can support a new generation of 'knowledge workers'.

The aim is to combine all the existing tools used for work-based communications, eg the internet, email, calendars, project schedulers, SMS and more to provide a single, more targeted way of scheduling meetings with international collaborators.

Computer scientists at the University of Leicester are working together with universities, corporate research centres and SMEs from six countries in the EU-funded project, inContext.

They aim to develop technology that goes beyond current internet-based collaboration techniques and meet the requirements of dynamic, multiform team working environments. Such environments arise in the new kinds of organizational structures and work interaction patterns that require highly dynamic forms of collaboration: teams bridge company boundaries, its members move around, people use mobile devices and work on many things at the same time, and so on.

Dr Stephan Reiff-Marganiec, lecturer in Computer Science at the University of Leicester and site leader of inContext, explains:

"Imagine a very common situation: a project in a large company needs to hold a meeting to make decisions on the next steps ahead. The meeting requires the attendance of the project's key people - all busy visiting customers around the world - as well as people with specific skills (say, a web designer). In order to get in touch with all these people, find out about their availability, choose a convenient time when they can all attend or make themselves represented, and select the web designer, a secretary will certainly be busy for the best part of several days..."

"The inContext project is developing a platform and techniques that make use of service-oriented computing to integrate existing tools (such as email systems, calendars, project schedulers) into a coherent system that can be used on any device, anywhere in the world, to make collaborative work more productive."

So far, the project has concentrated on the development of a Pervasive Collaboration Service Architecture (PCSA) that allows users to connect from a PC, a mobile phone or a PDA to the system and request services.

The system automatically decides which services to offer based on the context of the requesting user and others involved in the activity: where are they? what are they doing? what have they done in similar situations before?

Making such decisions is not easy: it involves methods and techniques that support data mining, the gathering and modelling of context information, and reasoning about models in order to derive new facts. The automation of the decision-making process involves sophisticated algorithms and methods.

Many scientific results have by now been produced, and the viability of the PCSA has been demonstrated through a prototype meeting scheduler.

Dr Reiff-Marganiec says "when secretaries tell the system that a meeting is required, it will automatically collect names of people who can represent those that cannot attend, find experts in specific areas, and suggest alternative times for the meeting. It will even send invitations to people on the device that they use: email, instant messages or SMS to a mobile phone."

Ather Mirza | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>