Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers design copper connections for high-speed computing

14.02.2008
Connections fabricated between computer chips, external circuitry and processors

As computers become more complex, the demand increases for more connections between computer chips and external circuitry such as a motherboard or wireless card. And as the integrated circuits become more advanced, maximizing their performance requires better connections that operate at higher frequencies with less loss.

Improving these two types of connections will increase the amount and speed of information that can be sent throughout a computer, according to Paul Kohl, Thomas L. Gossage chair and Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. Kohl presented his work in these areas at the Materials Research Society fall meeting.

The vertical connections between chips and boards are currently formed by melting tin solder between the two pieces and adding glue to hold everything together. Kohl’s research shows that replacing the solder ball connections with copper pillars creates stronger connections and the ability to create more connections.

“Circuitry and computer chips are made with copper lines on them, so we thought we should make the connection between the two with copper also,” said Kohl.

Solder and copper can both tolerate misalignment between two pieces being connected, according to Kohl, but copper is more conductive and creates a stronger bond.

With funding from the Semiconductor Research Corporation (SRC), Kohl and graduate student Tyler Osborn have developed a novel fabrication method to create all-copper connections between computer chips and external circuitry.

The researchers first electroplate a bump of copper onto the surface of both pieces, a process that uses electrical current to coat an electrically conductive object with metal. Then, a solid copper connection between the two bumps is formed by electroless plating, which involves several simultaneous reactions that occur in an aqueous solution without the use of external electrical current.

Since the pillar, which is the same thickness as a dollar bill, is fragile at room temperature, the researchers anneal it, or heat it in an oven for an hour to remove defects and generate a strong solid copper piece. Osborn found that strong bonds were formed at an annealing temperature of 180 degrees Celsius. He has also been investigating how misalignments between the two copper bumps affect pillar strength.

“I’ve also studied the optimal shape for the connections so that they’re flexible and mechanically reliable, yet still have good electrical properties so that we can transmit these high frequency signals without noise,” said Osborn.

The researchers have been working with Texas Instruments, Intel and Applied Materials to perfect and test their technology. Jim Meindl, director of Georgia Tech’s Microelectronics Research Center and professor in the School of Electrical and Computer Engineering, and Sue Ann Allen, professor in the School of Chemical and Biomolecular Engineering, have also collaborated on the work.

In addition to this new method for making vertical connections between chips and external circuitry, Kohl is also developing an improved signal transmission line with the help of graduate student Todd Spencer.

“Several very long communication pathways exist inside a computer that require a very high performance electrical line that can transmit at higher frequencies over long distances,” explained Spencer.

This is especially important in high-performance servers and routers where inter-chip distances can be large and signal strength may be significantly degraded. Kohl and Spencer have developed a new way to link high-speed signals between chips using an organic substrate, with funding from the Interconnect Focus Center, one of the Semiconductor Research Corporation/Defense Advanced Research Projects Agency (DARPA) Focus Center Research Programs.

Fabrication begins with an epoxy fiberglass substrate with copper lines on one side. The substrate is coated with a polymer and the areas without copper lines are exposed to ultraviolet (UV) light, which disintegrates the polymer where it’s not wanted. Then, the researchers coat the substrate with another polymer that hardens when exposed to UV light. Layers of titanium and copper are added on top of each copper line. When the layered substrate is heated at 180 degrees Celsius, the first polymer layer decomposes into carbon dioxide and acetone, which diffuse out leaving an air pocket.

“The amount of electrical loss relates to the connection’s sensitivity at higher frequencies,” explained Spencer. “Just having this air pocket there reduces our signal loss greatly.”

The researchers are currently designing a coaxial cable for this chip-to-chip signal link, which should greatly increase the maximum signal frequency the connection can carry.

Companies that make computer chips and package them into a device are very interested in these technologies, said Kohl.

“If these connections can be produced at a reasonable cost, they could be very important in the future because you’re giving the customer a better product for the same cost,” said Kohl.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>