Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers design copper connections for high-speed computing

Connections fabricated between computer chips, external circuitry and processors

As computers become more complex, the demand increases for more connections between computer chips and external circuitry such as a motherboard or wireless card. And as the integrated circuits become more advanced, maximizing their performance requires better connections that operate at higher frequencies with less loss.

Improving these two types of connections will increase the amount and speed of information that can be sent throughout a computer, according to Paul Kohl, Thomas L. Gossage chair and Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. Kohl presented his work in these areas at the Materials Research Society fall meeting.

The vertical connections between chips and boards are currently formed by melting tin solder between the two pieces and adding glue to hold everything together. Kohl’s research shows that replacing the solder ball connections with copper pillars creates stronger connections and the ability to create more connections.

“Circuitry and computer chips are made with copper lines on them, so we thought we should make the connection between the two with copper also,” said Kohl.

Solder and copper can both tolerate misalignment between two pieces being connected, according to Kohl, but copper is more conductive and creates a stronger bond.

With funding from the Semiconductor Research Corporation (SRC), Kohl and graduate student Tyler Osborn have developed a novel fabrication method to create all-copper connections between computer chips and external circuitry.

The researchers first electroplate a bump of copper onto the surface of both pieces, a process that uses electrical current to coat an electrically conductive object with metal. Then, a solid copper connection between the two bumps is formed by electroless plating, which involves several simultaneous reactions that occur in an aqueous solution without the use of external electrical current.

Since the pillar, which is the same thickness as a dollar bill, is fragile at room temperature, the researchers anneal it, or heat it in an oven for an hour to remove defects and generate a strong solid copper piece. Osborn found that strong bonds were formed at an annealing temperature of 180 degrees Celsius. He has also been investigating how misalignments between the two copper bumps affect pillar strength.

“I’ve also studied the optimal shape for the connections so that they’re flexible and mechanically reliable, yet still have good electrical properties so that we can transmit these high frequency signals without noise,” said Osborn.

The researchers have been working with Texas Instruments, Intel and Applied Materials to perfect and test their technology. Jim Meindl, director of Georgia Tech’s Microelectronics Research Center and professor in the School of Electrical and Computer Engineering, and Sue Ann Allen, professor in the School of Chemical and Biomolecular Engineering, have also collaborated on the work.

In addition to this new method for making vertical connections between chips and external circuitry, Kohl is also developing an improved signal transmission line with the help of graduate student Todd Spencer.

“Several very long communication pathways exist inside a computer that require a very high performance electrical line that can transmit at higher frequencies over long distances,” explained Spencer.

This is especially important in high-performance servers and routers where inter-chip distances can be large and signal strength may be significantly degraded. Kohl and Spencer have developed a new way to link high-speed signals between chips using an organic substrate, with funding from the Interconnect Focus Center, one of the Semiconductor Research Corporation/Defense Advanced Research Projects Agency (DARPA) Focus Center Research Programs.

Fabrication begins with an epoxy fiberglass substrate with copper lines on one side. The substrate is coated with a polymer and the areas without copper lines are exposed to ultraviolet (UV) light, which disintegrates the polymer where it’s not wanted. Then, the researchers coat the substrate with another polymer that hardens when exposed to UV light. Layers of titanium and copper are added on top of each copper line. When the layered substrate is heated at 180 degrees Celsius, the first polymer layer decomposes into carbon dioxide and acetone, which diffuse out leaving an air pocket.

“The amount of electrical loss relates to the connection’s sensitivity at higher frequencies,” explained Spencer. “Just having this air pocket there reduces our signal loss greatly.”

The researchers are currently designing a coaxial cable for this chip-to-chip signal link, which should greatly increase the maximum signal frequency the connection can carry.

Companies that make computer chips and package them into a device are very interested in these technologies, said Kohl.

“If these connections can be produced at a reasonable cost, they could be very important in the future because you’re giving the customer a better product for the same cost,” said Kohl.

Abby Vogel | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>