Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Separate signals through optical fibres for ultrafast home network

Dutch-sponsored researcher Christos Tsekrekos has investigated how a small network for at home or in a company can function optimally.

His research analyses the MGDM technique (Mode Group Diversity Multiplexing) of the Eindhoven University of Technology. This technique transmits each TV, telephone and Internet signal via a separate group of light rays through the optical fibre cable. Such a technology has not yet been marketed. Yet in the ideal situation it could be applied in a glass or polymer fibre, has the potential of being cheap, and transmits all information without disruption.

Existing systems for small networks at home or in a company make use of multimode glass fibres or multimode polymer optical fibres (POF). The latter are relatively thick cables (about 1 mm thick, thus thicker than the glass fibre which is 0.125 ƒÝm thick). Multimode fibre cables can conduct many light rays and can operate free of disruption and with a greater bandwidth than a wireless connection. However, due to a slight variation in the speed of the light rays through the multimode fibre, a signal transmitted by all of these rays becomes spread out. Consequently, the signals become broader and therefore fewer signals fit in the fibre, limiting the transmission capacity.

Independent channels
Tsekrekos investigated how the MGDM technique can increase the capacity of a multimode fibre network. He created independent channels by dividing the total group of light rays into groups of closely related light rays (or modes). Using special optical and electrical techniques, Tsekrekos investigated how the crosstalk between these groups could be eliminated so as to render these groups independent of each other. This step allows several groups to be used in parallel, thereby increasing the fibre's capacity. Moreover, each group can transport its own type of signal, which means that TV, telephone and Internet signals can be transmitted though the same fibre.

Using this approach the researcher constructed a simple yet stable MGDM system. The system works well up to distances of 1 km of multimode glass fibre with a core diameter of 62.5 ƒÝm. Tsekrekos invented a new mode-selective spatial filter (MSSF), based on lenses with specific characteristics, to make the system reliable and to allow a large number of channels to be realised. This can result in a stable and transparent five-channel MGDM system.

Philips, Draka Fibre, TNO-ICT, and several electrical contractors are supervising this project in the Technology Foundation STW users' committee. Philips and TNO-ICT are very interested in home networks that can flexibly transport a wide range of signals. The MGDM technology together with thick multimode glass or polymer fibres will soon make it possible for consumers to simply install a universal and high capacity broadband network at home. Draka Fibre (in Eindhoven) considers the MGDM technology to be a highly promising means of obtaining even more capacity and possible applications out of this type of fibre. Further research should lead to a greater increase of the multiplex factors in more complex network structures.

Dr. Christos Tsekrekos | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>