Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separate signals through optical fibres for ultrafast home network

28.01.2008
Dutch-sponsored researcher Christos Tsekrekos has investigated how a small network for at home or in a company can function optimally.

His research analyses the MGDM technique (Mode Group Diversity Multiplexing) of the Eindhoven University of Technology. This technique transmits each TV, telephone and Internet signal via a separate group of light rays through the optical fibre cable. Such a technology has not yet been marketed. Yet in the ideal situation it could be applied in a glass or polymer fibre, has the potential of being cheap, and transmits all information without disruption.

Existing systems for small networks at home or in a company make use of multimode glass fibres or multimode polymer optical fibres (POF). The latter are relatively thick cables (about 1 mm thick, thus thicker than the glass fibre which is 0.125 ƒÝm thick). Multimode fibre cables can conduct many light rays and can operate free of disruption and with a greater bandwidth than a wireless connection. However, due to a slight variation in the speed of the light rays through the multimode fibre, a signal transmitted by all of these rays becomes spread out. Consequently, the signals become broader and therefore fewer signals fit in the fibre, limiting the transmission capacity.

Independent channels
Tsekrekos investigated how the MGDM technique can increase the capacity of a multimode fibre network. He created independent channels by dividing the total group of light rays into groups of closely related light rays (or modes). Using special optical and electrical techniques, Tsekrekos investigated how the crosstalk between these groups could be eliminated so as to render these groups independent of each other. This step allows several groups to be used in parallel, thereby increasing the fibre's capacity. Moreover, each group can transport its own type of signal, which means that TV, telephone and Internet signals can be transmitted though the same fibre.

Using this approach the researcher constructed a simple yet stable MGDM system. The system works well up to distances of 1 km of multimode glass fibre with a core diameter of 62.5 ƒÝm. Tsekrekos invented a new mode-selective spatial filter (MSSF), based on lenses with specific characteristics, to make the system reliable and to allow a large number of channels to be realised. This can result in a stable and transparent five-channel MGDM system.

Philips, Draka Fibre, TNO-ICT, and several electrical contractors are supervising this project in the Technology Foundation STW users' committee. Philips and TNO-ICT are very interested in home networks that can flexibly transport a wide range of signals. The MGDM technology together with thick multimode glass or polymer fibres will soon make it possible for consumers to simply install a universal and high capacity broadband network at home. Draka Fibre (in Eindhoven) considers the MGDM technology to be a highly promising means of obtaining even more capacity and possible applications out of this type of fibre. Further research should lead to a greater increase of the multiplex factors in more complex network structures.

Dr. Christos Tsekrekos | EurekAlert!
Further information:
http://www.tue.nl

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>