Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project FIND - Consortium Develops the Industrial Internet of Tomorrow

01.08.2017

The rapid digitalization of production and automation is crucial to the successful implementation of the visionary concepts of Industrie 4.0. Among other things, this entails a secure and efficient communication infrastructure that automatically adapts to the requirements of each application; an infrastructure that enables the efficient networking of the production machines, products, and innovative data services; and, one that easily and safely supports the introduction of new industrial applications. Also, the increasing use of wireless technologies and the steady progress in the convergence of IT (Information Technology) and OT (Operational Technology) present special challenges.

The FIND consortium is composed of leading proponents from industry and research who have joined together to develop the foundation for the industrial Internet of tomorrow based on the latest network technologies from the fields of industrial automation, Internet, and 5G wireless communications.


The efficient integration of components, plants and assistance systems inside the smart factory requires an intelligent network management

DFKI/SmartFactoryKL


FIND project logo

DFKI/FIND

The consortium members include: DFKI (lead manager), Robert Bosch GmbH, Festo AG & Co. KG, the Institute Industrial IT (inIT) of the OWL University of Applied Sciences in Lemgo, the HMS Technology Center Ravensburg GmbH, Bosch Rexroth AG, rt-solutions.de GmbH, Siemens AG, the Technical University of Dresden and the University of Passau.

The aim of the FIND project is to develop an integrated architecture for the industrial Internet of tomorrow; in particular, a network control capable of automatically mapping and monitoring the requirements of industrial applications for a variety of resources and networking possibilities. Manual interventions when configuring the network and during operations are kept to a minimum.

In addition, using a variety of network technologies, it will also be possible to automatically provide defined service packages on an end-to-end basis. This approach, for example, permits a very flexible and efficient implementation of the complex, distributed control architectures where the underlying complexity is mainly abstracted from the application developers and plant operators.

The system automatically compensates for the loss or failure of a single resource (for example, a control hardware), reducing unnecessary standstill time of the other units or machines and increasing the efficiency of the overall plant. Future systems currently in development like Time-Sensitive Networking (TSN) or 5G should be easily integrated just as the many existing industrial communication technologies and devices to ensure seamless migration.

Professor Hans D. Schotten, scientific director and head of the Intelligent Networks research department at DFKI, is the coordinator of the consortium: "We seek to develop a new and future-proof network control through the combination and integration of existing network technologies that will be flexible, secure, and efficient in operation."

As the degree of networking increases, there is also a significant increase in the requirement for the network solutions under development to be protected from attack. The FIND project devotes special attention to this topic and, consequently, develops and integrates special security concepts during the design phase. The new industrial networking technologies will be met with wide acceptance if they can be used without the need for specialized network experts, which implies another key requirement – user friendliness. The FIND solution will feature automated configuration, optimization, and control connectivity.

Project funding of approximately 4.3 million euros has been provided for a three-year term by the Federal Ministry of Education and Research (BMBF).

Contact:
Prof. Dr.-Ing. Hans Schotten
Department of Intelligent Networks
German Research Center for Artificial Intelligence (DFKI)
Trippstadter Straße 122
67663 Kaiserslautern
E-Mail: Hans.Schotten@dfki.de

Press Contact:
Communications Department
German Research Center for Artificial Intelligence (DFKI)
Trippstadter Straße 122
67663 Kaiserslautern
Tel.: 0631 20575 -1700/1710
E-Mail: uk-kl@dfki.de

Weitere Informationen:

http://www.future-industrial-internet.de Project homepage FIND

Christian Heyer DFKI Kaiserslautern | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI
Further information:
http://www.dfki.de

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>