Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential Future Data Storage at Domain Boundaries

15.01.2014
Scientists discover polar domain walls in antiferroelectric materials

Storing more and more in an ever-smaller space – what sounds impossible is in fact just part of the daily routine in information technology, where for decades, increasing amounts of data have been successfully stored on media with ever higher densities.


Electron microscopic image of an antiferroelectric crystal, with the dark, prominent diagonal lines marking the boundaries. The bar at the bottom left indicates a length of 200 nanometers.

Source: Forschungszentrum Jülich


Atomic resolution electron microscopic image, with a boundary marked horizontally in cyan. The coloured circles illustrate the constituent parts of the crystal; lead (yellow), zirconium (green) and oxygen (red). The arrows show the polarization, which is neutralized outside the boundaries. The white bar indicates a length of one nanometer.

Source: Forschungszentrum Jülich

An international team, including researchers from Forschungszentrum Jülich, has now discovered a physical phenomenon that could prove suitable for use in further data aggregation. They found that domain walls, which separate areas in certain crystalline materials, display a polarization, potentially allowing information to be stored in the tiniest of spaces, thus saving energy.

The results of this study have been published in the latest edition of the journal Nature Communications (DOI: 10.1038/ncomms4031).

Scientists from Forschungszentrum Jülich, Swiss Federal Institute of Technology Lausanne (EPFL), University of Silesia in Katowice, Poland, and Xi'an Jiaotong University in China, have investigated so-called antiferroelectric crystals with the help of the most advanced electron microscopes and computer simulations. These materials possess no electrical polarization and for this reason, seemed up until recently to be of no interest for such applications. The researchers have now discovered that certain areas within these materials do indeed exhibit ferroelectric polar properties.

Ferroelectricity is generated when displacements of positive and negative ions result in the formation of electrical dipoles. The magnitude and orientation of these dipoles, also known as polarization, can be altered using an external electric field and is able to maintain itself without any additional current until it is overwritten. Ferroelectric materials are for this reason already used, for example, to store data on train tickets.

The ferroelectric areas that the researchers have discovered are only around two nanometers thick and could therefore one day be used to store data in a tenth of the space that magnetic materials use. They form the boundaries between identically-structured areas of the otherwise antiferroelectric materials.

"We can imagine these materials as being like three-dimensional patchwork objects made from regularly-arranged building blocks, which are the domains", explains Dr. Xiankui Wei, visiting scientist at the Peter Grünberg Institute and the Ernst Ruska-Centre, and post-doctoral researcher at EPFL. "Within each individual building block, the polarization is absent due to cancellation of oppositely arranged electric dipoles in the basic structure unit. However, the boundaries or 'walls' between domains are polar."

Investigations using atomic resolution electron microscopy, with the help of a technique developed at Forschungszentrum Jülich showed that each wall is uniformly polarized. To change the polarization and write the data, the only requirement is a voltage pulse, as the polarization is then stored until overwritten. As no current is necessary, this uses less energy than magnetic data storage does.

"What is especially exciting in terms of applications is the special arrangement of the walls", reports Prof. Nava Setter of EPFL; under the microscope it is possible to see at relatively low magnification, that the domains are separated from each other by long, parallel walls. The position of the strain-free walls is variable – upon application of an inhomogeneous electric field, they move either closer together or further apart. The researchers intend to investigate these phenomena in more detail, as the ability to accurately control the mobility and density of the walls are important requirements in terms of technical applications.

Original publication:

Ferroelectric translational antiphase boundaries in nonpolar materials;
Xian-Kui Wei, Alexander K. Tagantsev, Alexander Kvasov, Krystian Roleder,
Chun-Lin Jia, Nava Setter;
Nature Communications 5 (2014), Article number: 3031, published online: 8 January 2014; DOI: 10.1038/ncomms4031

Further information:

Peter Grünberg Institute – Microstructure Research (PGI-5)
http://www.fz-juelich.de/pgi/pgi-5/EN/Home/home_node.html;jsessionid=
1F824736AB46A1D3B6D3912D22C8FCE4
École polytechnique fédérale de Lausanne EPFL – Ceramics Laboratory
http://lc.epfl.ch/
Ernst Ruska-Centre (ER-C)
http://www.er-c.org/centre/centre.htm
Contact:
Dr. Xiankui Wei, Peter Grünberg Institute
- Microstructure Research (PGI-5) and Ernst Ruska-Centre (ER-C),
Forschungszentrum Jülich, Germany
Tel. +49 2461 61-9338, E-Mail: x.wei@fz-juelich.de or xiankui.wei@epfl.ch
Press contact:
Angela Wenzik, Science Journalist, Forschungszentrum Jülich, Germany
Tel. +49 2461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>