Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New organic material may speed Internet access

17.03.2009
The next time an overnight snow begins to fall, take two bricks and place them side by side a few inches apart in your yard.

In the morning, the bricks will be covered with snow and barely discernible. The snowflakes will have filled every vacant space between and around the bricks.

What you will see, says Ivan Biaggio, resembles a phenomenon that, when it occurs at the smallest of scales on an integrated optical circuit, could hasten the day when the Internet works at superfast speeds.

Biaggio, an associate professor of physics at Lehigh University, is part of an international team of researchers that has developed an organic material with an unprecedented combination of high optical quality and strong ability to mediate light-light interaction and has engineered the integration of this material with silicon technology so it can be used in optical telecommunication devices.

A description of this material was published on the Nature Photonics Web site March 15.

The material, which is composed of small organic molecules with high nonlinear optical susceptibilities, mimics the behavior of the snowflakes covering the bricks when it is deposited into the slot, or gap, that separate silicon waveguides that control the propagation of light beams on an integrated optical circuit.

Just as the snowflakes, being tiny and mobile, fill every empty space between the two bricks, Biaggio says, the molecules completely and homogeneously fill the slot between the waveguides. The slots measure only tens of nanometers wide; 1 nm is one one-billionth of a meter, or about the width of a dozen carbon atoms.

"We have been able to make thin films by combining the molecules into a material that is perfectly transparent, flat, and free of any irregularities that would affect optical properties," says Biaggio.

The slot between the waveguides is the region where most of the light guided by the silicon propagates. By filling the slot, say Biaggio and his collaborators, the molecules add an ultra-fast all-optical switching capability to silicon circuitry, creating a new ability to perform the light-to-light interactions necessary for data processing in all-optical networks.

The nanophotonic device obtained in this way, says the group, has demonstrated the best all-optical demultiplexing rate yet recorded for a silicon-organic-hybrid device.

Multiplexing is the process by which multiple signals or data streams are combined and transmitted on a single channel, thus saving expensive bandwidth. Demultiplexing is the reverse process.

In tests, the novel hybrid device was able to extract every fourth bit of a 170-gigabit-per-second telecommunications data stream and to demultiplex the stream to 42.7 gigabits per second.

Biaggio's group is part of an international collaboration that includes scientists from the Institute of Photonics and Quantum Electronics at the University of Karlsruhe in Germany, the Photonics Research Group at Ghent University in Belgium, and the Laboratory for Organic Chemistry at the Swiss Federal Institute of Technology (ETH) in Zurich. Biaggio is affiliated with Lehigh's Center for Optical Technologies (COT). Another group member, Bweh Esembeson, earned a Ph.D. in physics from Lehigh earlier this year and is now an applications engineer with Thorlabs Inc. in New Jersey.

The silicon-organic-hybrid device and its breakthrough properties were presented for the first time as a postdeadline contribution at a meeting of the optical telecom industry last spring and at several other scientific conferences, and Biaggio's group published an article titled "A High-optical Quality Supramolecular Assembly for Third-order Integrated Nonlinear Optics" in the October 2008 issue of Advanced Materials.

A nonlinear optical answer to bandwidth demand

As Internet users demand greater bandwidth for ever faster communications, scientists and engineers are working to increase the speed at which information can be transmitted and routed along a network. They are hoping to achieve a major leap in velocity by designing circuits that rely solely on light-waves process data.

At present, data must be converted back and forth from optical signals to electrical signals for managing its progress within the optical telecommunication network. This limits the flexibility and the speed of optical telecommunication. All-optical circuits, experts say, could unleash the full potential of optical telecommunication and data processing.

All-optical circuits require nonlinear optical materials with good optical quality. A nonlinear optical response occurs in a material when the intensity of light alters the properties of the material through which light is passing, affecting, in turn, the manner in which the light propagates.

Biaggio's group is working with a small organic molecule called DDMEBT that possesses one of the strongest nonlinear optical responses yet observed when compared to its relatively small size. The molecule can condense from the vapor phase into a bulk material. The high, off-resonant bulk nonlinearity and large-scale homogeneity of this material, says Esembeson, represent a unique combination not often found in an organic material.

"Between high optical nonlinearity in a molecule and ability to actually fabricate a bulk plastic with excellent optical quality, there is always a compromise," he says.

The DDMEBT bulk material possesses 1,000 times the nonlinearity of silica glass. This organic material, however, is difficult to flexibly structure into nanoscale waveguides or other optical circuitry. Silicon, on the other hand, is structurally suited to the dense integration of components on photonic circuit devices. And silicon technology is mature and precise. It enables the creation of waveguides whose nanoscale flatness facilitates the control of light propagation.

"With pure silicon," says Biaggio, "you can build waveguides that enable you to control light beam propagation, but you cannot get ultrafast light-to-light interaction. Using only silicon, people have achieved a data switching rate of only 20 to 30 gigabits per second, and this is very slow.

"We need higher-speed switching to achieve a higher bit rate. Organic materials can do this, but they are not terribly good for building waveguides that control propagation of tightly confined light beams."

To combine the strengths of the DDMEBT and the silicon, Biaggio and his collaborators have fashioned silicon-organic hybrid (SOH) waveguides where silicon waveguides are covered with DDMEBT.

"We have combined the two approaches," he says. "We start from a silicon waveguide designed to guide the light between two silicon ridges . Then we use molecular beam deposition to fill the space between the ridges with the organic material [DDMEBT], creating a dense plastic with high optical quality and high nonlinearity where the light propagates.

"We combine the best of both technologies."

One of the group's singular achievements, he says, is the filling-in process.

"The key question was whether we could put the DDMEBT between the two silicon strips. There is a lot of research in this area, but no one had been able to make an organic material completely and homogeneously cover such a silicon structure, so that it spreads out and fills all the spaces. Homogeneity is necessary to prevent light scattering and losses.

We now achieved this by using a molecular structure that decreases inter-molecular interactions and promotes the formation of a homogeneous solid state. We then heated the molecules to a vapor phase and used a molecular beam to deposit the molecules on top of the silicon structure. The molecules were able to homogeneously fill the nanometer scale slot between the silicon ridges and to cover the whole structure we needed to cover.

"Our collaborators in Karlsruhe, who have state-of-the-art equipment for characterizing optical communications systems, were able to reliably switch individual bits out of a 170 gigabits per second data stream, which is impressive, but the organic material would be able to support even faster data rates"

The researchers summed up their achievements in one of their forthcoming articles:

"To the best of our knowledge, this is the first time that nonlinear SOH [silicon-organic hybrid] slot waveguides were used in high-speed optical communication systems. We believe that there is still a large potential for improving the conversion efficiency and the signal quality."

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>