Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Device Will Change How Florida Monitors Sea Level Rise, Water Quality, Hurricanes and More

20.02.2015

Tiny Wireless Computing Devices Make the 'Invisible' Visible

Small wireless computing devices, ranging from the size of a matchbox to the size of a dime are going to change the way Florida monitors its water quality, sea level rise, hurricanes, agriculture, aquaculture, and even its aging senior population.


Florida Atlantic University

Small wireless computing devices developed by Jason Hallstrom, Ph.D. range in size from a matchbox to the size of a dime. This unique device can capture a birds-eye-view of Florida and beyond and will change the way Florida monitors its water quality, sea level rise, hurricanes, agriculture, aquaculture, and even its aging senior population.

The types of sensing devices developed by computer scientist Jason Hallstrom, Ph.D., who recently joined Florida Atlantic University, can collect information about the surrounding environment and transmit that information to cloud-based computing systems that store, analyze and present that information to educators, researchers and decision-makers. Deployable at massive scales, the technology represents a paradigm shift in how our world is observed and managed.

“This is a thrilling time to join Florida Atlantic University,” said Hallstrom. “The university is on an amazing trajectory, driven by capabilities and opportunities that span every college, at every campus. There is incredible capacity to build interdisciplinary teams here, teams that are going to have a fundamental impact on the state and the nation.”

Hallstrom, a professor in FAU’s College of Engineering and Computer Science, will serve as director of the Institute for Sensing and Embedded Network Systems Engineering at FAU (ISENSE@FAU). ISENSE will serve as an interdisciplinary research hub, drawing talent from both within and outside FAU to tackle grand challenge problems head-on through novel hardware, software and ideas.

“Florida Atlantic University has a unique opportunity to become a clearinghouse for streaming data, to drive big data and data analytics, and to become a major applier of these data streams to fuel research,” said FAU President John Kelly. “Jason is an outstanding addition to our University and his cutting-edge research will bring significant benefits to our state and its citizens.”

Hallstrom is already exploring joint projects with FAU’s Southeast National Marine Renewable Energy Center, Harbor Branch Oceanographic Institute and Charles E. Schmidt College of Medicine. These collaborations will produce new technologies, new ideas and new discoveries that will benefit Florida and its citizens.

“ISENSE@FAU will truly exemplify how interdisciplinary research can bring together faculty, students and staff from across disciplines and campuses to solve complex problems that impact us globally,” said Daniel C. Flynn, Ph.D., vice president for research at FAU, who will oversee the Institute.

Hallstrom’s research is supported by awards from the National Science Foundation, and he is working on the next generation of his water monitoring device, aptly named “Eiffel” to illustrate how this unique device can capture a birds-eye-view of Florida and beyond.

“Applied sensing and the emerging ‘Internet of Things’ provide endless possibilities for making the ‘invisible’ visible, both in the small and in the large,” said Hallstrom. “At FAU, we will be developing technologies for a broad spectrum of applications and uses, ranging from monitoring physiological changes in senior patients to support aging in place, to mitigating natural and manmade disasters, such as hurricanes and biological threats.”

Sensor networks enable applications in monitoring wildfire conditions, locating sniper fire and assessing the structural integrity of buildings and roads. In the event of a manmade or natural disaster, these “sensing fabrics” can be used to provide near instantaneous feedback on the type, degree and location of damage. Emergency management decisions can then be optimized to quickly commit personnel and resources to where they are needed most.

Prior to joining FAU, Hallstrom was associate professor in the Computer Science Division of the School of Computing at Clemson University and served as deputy director and director of technology for Clemson’s Institute of Computational Ecology. Hallstrom spent more than a decade at Clemson and was an integral member of the university-wide research team of river and wetland ecologists, computer engineers, software developers and forestry and natural resource scientists who created an information web to monitor, analyze and report the health of the Savannah River Basin.

Clemson’s Intelligent River® enterprise operates a hydrological observation program that provides real-time monitoring, analysis and management of water resources throughout South Carolina. In his new position at FAU, Hallstrom will continue to lead the technology development efforts for the Intelligent River® program.


About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes – marine and coastal issues, biotechnology and contemporary societal challenges – which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship.

For more information, visit www.fau.edu 

Contact Information
Gisele Galoustian
Media Relations Director, Research
ggaloust@fau.edu
Phone: 561-297-2676
Mobile: 561-985-4615

Gisele Galoustian | newswise

Further reports about: Atlantic Change Device Hurricanes Water interdisciplinary research sensing

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>