Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanotech Discovery at Rensselaer Polytechnic Institute Could Lead to Breakthrough in Infrared Satellite Imaging Technology

19.05.2010
Researchers Develop Lens-Less, Gold-Covered “Microlens” That Enhances Imaging Signal Without Increasing Noise

Researchers from Rensselaer Polytechnic Institute have developed a new nanotechnology-based “microlens” that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices.

By leveraging the unique properties of nanoscale gold to “squeeze” light into tiny holes in the surface of the device, the researchers have doubled the detectivity of a quantum dot-based infrared detector. With some refinements, the researchers expect this new technology should be able to enhance detectivity by up to 20 times.

This study is the first in more than a decade to demonstrate success in enhancing the signal of an infrared detector without also increasing the noise, said project leader Shawn-Yu Lin, professor of physics at Rensselaer and a member of the university’s Future Chips Constellation and Smart Lighting Engineering Research Center.

“Infrared detection is a big priority right now, as more effective infrared satellite imaging technology holds the potential to benefit everything from homeland security to monitoring climate change and deforestation,” said Lin, who in 2008 created the world’s darkest material as well as a coating for solar panels that absorbs 99.9 percent of light from nearly all angles.

“We have shown that you can use nanoscopic gold to focus the light entering an infrared detector, which in turn enhances the absorption of photons and also enhances the capacity of the embedded quantum dots to convert those photons into electrons. This kind of behavior has never been seen before,” he said.

Results of the study, titled “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” were published online recently by the journal Nano Letters. The paper also will appear in a forthcoming issue of the journal’s print edition. The U.S. Air Force Office of Scientific Research funded this study. The paper is available online at: http://pubs.acs.org/doi/abs/10.1021/nl100081j

The detectivity of an infrared photodetector is determined by how much signal it receives, divided by the noise it receives. The current state-of-the art in photodetectors is based on mercury-cadmium-telluride (MCT) technology, which has a strong signal but faces several challenges including long exposure times for low-signal imaging. Lin said his new study creates a roadmap for developing quantum dot infrared photodetectors (QDIP) that can outperform MCTs, and bridge the innovation gap that has stunted the progress of infrared technology over the past decade.

The surface plasmon QDIPs are long, flat structures with countless tiny holes on the surface. The solid surface of the structure that Lin built is covered with about 50 nanometers – or 50 billionths of a meter – of gold. Each hole is about 1.6 microns – or 1.6 millionths of a meter – in diameter, and 1 micron deep. The holes are filled with quantum dots, which are nanoscale crystals with unique optical and semiconductor properties.

The interesting properties of the QDIP’s gold surface help to focus incoming light directly into the microscale holes and effectively concentrate that light in the pool of quantum dots. This concentration strengthens the interaction between the trapped light and the quantum dots, and in turn strengthens the dots’ ability to convert those photons into electrons. The end result is that Lin’s device creates an electric field up to 400 percent stronger than the raw energy that enters the QDIP.

The effect is similar to what would result from covering each tiny hole on the QDIP with a lens, but without the extra weight, and minus the hassle and cost of installing and calibrating millions of microscopic lenses, Lin said.

Lin’s team also demonstrated in the journal paper that the nanoscale layer of gold on the QDIP does not add any noise or negatively impact the device’s response time. Lin plans to continue honing this new technology and use gold to boost the QDIP’s detectivity, by both widening the diameter of the surface holes and more effective placement of the quantum dots.

“I think that, within a few years, we will be able to create a gold-based QDIP device with a 20-fold enhancement in signal from what we have today,” Lin said. “It’s a very reasonable goal, and could open up a whole new range of applications from better night-vision goggles for soldiers to more accurate medical imaging devices.”

Co-authors of the paper are Rensselaer Senior Research Scientist James Bur, graduate student Chun-Chieh Chang, and Research Associate Yong-Sung Kim; Yagya D. Sharma, Rajeev V. Shenoi, and Sanjay Krishna of the Center for High Technology Materials at the University of New Mexico, Albuquerque; and Danhong Huang of the Space Vehicles Directorate at the Air Force Research Laboratory, Kirtland Air Force Base.

For more information on Lin’s research, visit:

http://www.rpi.edu/dept/phys/faculty/profiles/lin.html
http://www.rpi.edu/~sylin/
For information on Lin’s “darkest material” and solar panel coating visit:
http://news.rpi.edu/update.do?artcenterkey=2393
http://www.washingtonpost.com/wp-dyn/content/article/2008/02/19/AR2008021902617.html
http://news.rpi.edu/update.do?artcenterkey=2507
http://www.cnn.com/2008/TECH/science/11/06/solar.coating/index.html

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>