Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Researchers Developing ‘BIGDATA’ Toolbox to Help Genome Researchers

05.10.2012
Today’s life scientists are producing genomes galore.

But there’s a problem: The latest DNA sequencing instruments are burying researchers in trillions of bytes of data and overwhelming existing tools in biological computing. It doesn’t help that there’s a variety of sequencing instruments feeding a diverse set of applications.

Iowa State University’s Srinivas Aluru is leading a research team that’s developing a set of solutions using high performance computing. The researchers want to develop core techniques, parallel algorithms and software libraries to help researchers adapt parallel computing techniques to high-throughput DNA sequencing, the next generation of sequencing technologies.

Those technologies are now ubiquitous, “enabling single investigators with limited budgets to carry out what could only be accomplished by an international network of major sequencing centers just a decade ago,” said Aluru, the Ross Martin Mehl and Marylyne Munas Mehl Professor of Computer Engineering at Iowa State.

“Seven years ago we were able to sequence DNA one fragment at a time,” he said. “Now researchers can read up to 6 billion DNA sequences in one experiment.

“How do we address these big data issues?”

A three-year, $2 million grant from the BIGDATA program of the National Science Foundation and the National Institutes of Health will support the search for a solution by Aluru and researchers from Iowa State, Stanford University, Virginia Tech and the University of Michigan. In addition to Aluru, the project’s leaders at Iowa State are Patrick Schnable, Iowa State’s Baker Professor of Agronomy and director of the centers for Plant Genomics and Carbon Capturing Crops, and Jaroslaw Zola, a former research assistant professor in electrical and computer engineering who recently moved to Rutgers University.

The majority of the grant – $1.3 million – will support research at Iowa State. And Aluru is quick to say that none of the grant will support hardware development.

Researchers will start by identifying a large set of building blocks frequently used in genomic studies. They’ll develop the parallel algorithms and high performance implementations needed to do the necessary data analysis. And they’ll wrap all of those technologies in software libraries researchers can access for help. On top of all that, they’ll design a domain specific language that automatically generates computing codes for researchers.

Aluru said that should be much more effective than asking high performance computing specialists to develop parallel approaches to each and every application.

“The goal is to empower the broader community to benefit from clever parallel algorithms, highly tuned implementations and specialized high performance computing hardware, without requiring expertise in any of these,” says a summary of the research project.

Aluru said the resulting software libraries will be fully open-sourced. Researchers will be free to use the libraries while developing, editing and modifying them as needed.

“We’re hoping this approach can be the most cost-effective and fastest way to gain adoption in the research community,” Aluru said. “We want to get everybody up to speed using high performance computing.”

Srinivas Aluru, Electrical and Computer Engineering,
515-294-3539, aluru@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>