Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improved Planning for the Evacuation of Buildings


A simulation software from Siemens can analyze people's behavior in emergency situations. The software known as "Crowd Control" calculates how individuals or crowds will behave and move in emergencies. The program allows experts to observe and optimize evacuation and rescue measures in advance and in real time. Making such improvements is one of the most complex tasks that security officers have to perform.

Crowd Control can determine in advance how thousands of people will move, and it does so at a rate that is ten times faster than real life. This improves the planning of buildings and allows security personnel to be trained more easily. Siemens offers building evacuation simulations as an independent consulting service. This service encompasses the entire range of analytical tasks, extending from data collection and data preparation to the generation of reports and the interpretation of the results.

One of the reasons why it is so difficult to plan building evacuations in advance is that conditions change very quickly and dynamically during emergencies such as fires or shootings. In addition, it's hard to estimate how many people are actually present at an event and whether any of them fall into special categories (e.g. elderly, children, disabled). Moreover, passages can be blocked by objects and temporary construction sites can prevent people from using emergency exits.

The consultants from Siemens work together with the customers and their architects and planners to develop a variety of scenarios, for which they then use Crowd Control to calculate and visualize the resulting effects. Among other things, experts can take different types of people and blocked passages into account.

The algorithm, which was developed by Siemens' global research unit Corporate Technology, divides spaces into small virtual cells, each of which corresponds approximately to the space needed by a single human being. Force fields are used to define the behavior of empty and occupied cells.

Users can select person' starting points and destinations. Once the parameters are set, the model can run an emergency scenario that enables it to predict where dangerous situations would arise in the event of an evacuation under the postulated conditions.

Buildings can be made safer and before construction

Because the results can be viewed in 3D and in real time, the software can also be used as a training tool for demonstrating a variety of scenarios to security personnel. The consultants from Siemens also assist architects and security officers by using Crowd Control to analyze building plans. As a result, buildings can be made safer and more cost efficient before they are actually constructed.

Possible areas of application include airports, train stations, schools, shopping centers, and office buildings. In the case of airports and train stations in particular, simulations are the only feasible means of determining whether existing plans will be effective in an emergency. The experts from Siemens plan to further enhance Crowd Control in the future so that it can simulate other highly complex scenarios such as floods and explosions.

Weitere Informationen:

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>