Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hold the Phone for Vital Signs

07.10.2011
WPI researchers turn a smart phone into a medical monitor.

An iPhone app that measures the user's heart rate is not only a popular feature with consumers, but it sparked an idea for a Worcester Polytechnic Institute (WPI) researcher who is now turning smart phones, and eventually tablet devices, into sophisticated medical monitors able to capture and transmit vital physiological data.

A team led by Ki Chon, professor and head of biomedical engineering at WPI, has developed a smart phone application that can measure not only heart rate, but also heart rhythm, respiration rate and blood oxygen saturation using the phone's built-in video camera. The new app yields vital signs as accurate as standard medical monitors now in clinical use. Details of the new technology are reported in the paper "Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone," published online, in advance of print, by the journal IEEE Transactions on Biomedical Engineering.

"This gives a patient the ability to carry an accurate physiological monitor anywhere, without additional hardware beyond what’s already included in many consumer mobile phones," the authors write. "One of the advantages of mobile phone monitoring is that it allows patients to make baseline measurements at any time, building a database that could allow for improved detection of disease states."

The application, developed by Chon and WPI colleagues Yitzhak Mendelson, associate professor of biomedical engineering, Domhnull Granquist-Fraser, assistant professor of biomedical engineering, and doctoral student Christopher Scully, analyzes video clips recorded while the patient's fingertip is pressed against the lens of the phone's camera. As the camera’s light penetrates the skin, it reflects off of pulsing blood in the finger; the application is able to correlate subtle shifts in the color of the reflected light with changes in the patient's vital signs. Chon, who is an expert on signal processing, has previously developed algorithms that monitor a range of vital signs using traditional clinical devices like a Holter heart monitor. In the new study, Chon and his team created and adapted algorithms to process the data gathered by the phone’s video camera.

To test for accuracy, volunteers at WPI donned the standard monitoring devices now in clinical use for measuring respiration, pulse rate, heart rhythm, and blood oxygen content. Simultaneously, the volunteers pressed a finger onto the camera of a Motorola Droid phone. While all devices were recording, the volunteers went through a series of breathing exercises while their vital signs were captured. Subsequent analysis of the data showed that Chon's new smart phone monitor was as accurate as the traditional devices. While this study was done on a Droid, Chon said the technology is easily adaptable to most smart phones with an embedded video camera.

Furthermore, since the new technology can measure heart rhythm, Chon believes the smart-phone app could be used to detect atrial fibrillation (AF), which is the most common form of cardiac arrhythmia. "We are building that application now, and we have started a preliminary clinical study with colleagues at UMass Medical School to use the smart phone to detect AF," Chon said.

Chon and colleagues are also at work developing a version of the mobile monitoring technology for use on video-equipped tablets like the iPad. A patent application for the technology has been filed. "Imagine a technician in a nursing home who is able to go into a patient's room, place the patient's finger on the camera of a tablet, and in that one step capture all their vital signs," Chon said. "We believe there are many applications for this technology, to help patients monitor themselves, and to help clinicians care for their patients."

Michael Cohen | EurekAlert!
Further information:
http://www.wpi.edu
http://www.wpi.edu/news/20112/kichonapp.html

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>