Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Speed Internet from the Ceiling Lamp

09.04.2013
New broadband components for visible light communication
In visible light communication, the Fraunhofer Heinrich Hertz Institute HHI has set a further milestone on the way to high-speed internet from the ceiling lamp. Development of novel components for data transmission over LEDs means that significantly higher bandwidth can now be used in real-time with data throughput rates of up to 3 Gbit/s being reached in laboratory experiments. The new components will be presented at FOE 2013.

Location: Tokyo Big Sight, Tokyo, Japan
Booth 24-25
Visible Light Communication
The technology developed by HHI makes it possible to use standard off-the-shelf LED room lights for data transmission. Data rates of up to 800 Mbit/s were reached by this optical WLAN under laboratory conditions, while a complete real-time system exhibited at trade fairs reached data throughput of 500 Mbit/s. The newly developed patent protected components have now achieved a transmission rate in laboratory experiments of over 1 Gbit/s per single light frequency. As off-the-shelf LEDs mainly use three light frequencies or light colors, speeds of up to 3 Gbit/s are feasible.

Thus far LEDs could only be used with a bandwidth of around 30 MHz, yet the new technical components enable exploitation of a much higher bandwidth of up to 180 MHz. As the higher frequency bands are also used for transmission, this significantly boosts the data throughput rate. Development of the components as modules makes them suitable for customized integration in technology developments such as Car-to-X communication.




But visible light communication also has a broad array of other possible applications ranging from areas like hospital operating theatres where safety is at a premium to places like trade shows and factory halls where radio communication is problematic. This new development represents a major step forward towards optical high-speed WLAN.

Contact
Corporate Communications, Press and PR
Dr. Gudrun Quandel
Tel.+49 30 31002-400
Mobile+49 171 1995334
Contact
Dr.-Ing. A. Paraskevopoulos
Tel.+49 30 31002-527

Dr. Gudrun Quandel | Fraunhofer-Gesellschaft
Further information:
http://www.hhi.fraunhofer.de/media/press/high-speed-internet-from-the-ceiling-lamp.html

More articles from Information Technology:

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

nachricht New software turns mobile-phone accessory into breathing monitor
14.09.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>