Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-Speed Internet from the Ceiling Lamp

New broadband components for visible light communication
In visible light communication, the Fraunhofer Heinrich Hertz Institute HHI has set a further milestone on the way to high-speed internet from the ceiling lamp. Development of novel components for data transmission over LEDs means that significantly higher bandwidth can now be used in real-time with data throughput rates of up to 3 Gbit/s being reached in laboratory experiments. The new components will be presented at FOE 2013.

Location: Tokyo Big Sight, Tokyo, Japan
Booth 24-25
Visible Light Communication
The technology developed by HHI makes it possible to use standard off-the-shelf LED room lights for data transmission. Data rates of up to 800 Mbit/s were reached by this optical WLAN under laboratory conditions, while a complete real-time system exhibited at trade fairs reached data throughput of 500 Mbit/s. The newly developed patent protected components have now achieved a transmission rate in laboratory experiments of over 1 Gbit/s per single light frequency. As off-the-shelf LEDs mainly use three light frequencies or light colors, speeds of up to 3 Gbit/s are feasible.

Thus far LEDs could only be used with a bandwidth of around 30 MHz, yet the new technical components enable exploitation of a much higher bandwidth of up to 180 MHz. As the higher frequency bands are also used for transmission, this significantly boosts the data throughput rate. Development of the components as modules makes them suitable for customized integration in technology developments such as Car-to-X communication.

But visible light communication also has a broad array of other possible applications ranging from areas like hospital operating theatres where safety is at a premium to places like trade shows and factory halls where radio communication is problematic. This new development represents a major step forward towards optical high-speed WLAN.

Corporate Communications, Press and PR
Dr. Gudrun Quandel
Tel.+49 30 31002-400
Mobile+49 171 1995334
Dr.-Ing. A. Paraskevopoulos
Tel.+49 30 31002-527

Dr. Gudrun Quandel | Fraunhofer-Gesellschaft
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>