Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid computing for the masses

09.02.2010
Having helped scientists study the building blocks of the universe, peer inside the human body in miniscule detail and monitor climate change, grid computing could soon be put to more mundane uses by your home or office computer.

A team of European researchers has developed middlewaredesigned to allow any computer running any operating system to simply, efficiently and cost-effectively access the distributed computers that make up the grid.

Their work promises to trigger a kind of popular revolution in which everyone will be granted access to the powerful resource-sharing technology that, until now, has largely been the preserve of academia.

“Grid computing, which allows users to access the computing resources of many different machines distributed around the world, has been invaluable to science. However, much of the business world and the general public have had few ways to use it due to the complexity of installing and configuring grid software, accessing grid networks, obtaining permissions to use resources… etc,” explains Farid Ould-Saada, a physicist at the University of Oslo, Norway.

Working in the EU-funded KnowARC project, Ould-Saada is leading a team of researchers in an effort to expand accessibility to grid resources. Their ultimate goal is to make computing power on the grid as easily accessible to everyone as information is on the internet.

“Getting access to the grid should be as simple as installing a new browser to get on the internet… only then will the survival and expansion of the grid be assured,” the KnowARC director says.

In an effort to achieve that goal, the KnowARC researchers set about improving existing Advanced Resource Connector (ARC) middleware – software designed to provide interoperability between computing systems, architectures and platforms. Originally developed by several Nordic research institutes in the Nordugrid collaboration, which is currently chaired by Ould-Saada, the next-generation ARC middleware is now being used across Europe to set up grid networks.

The software was recently selected by the European Grid Initiative Design Study (EGI_DS) as one of three key middleware solutions for a stable and sustainable European super-grid infrastructure. And, thanks to work carried out in the KnowARC project, it will soon be provided as a standard installation with the popular Debian and Fedora distributions of open source operating system Linux, giving anyone easy access to grid resources.

“Providing ARC through Linux distributions was one of the goals of the project… and we also wanted to ensure deployment on proprietary operating systems such as MS Windows and Mac OS. This has always been something of a challenge because in data-driven scientific computing Linux is the platform of choice, but we’ve reached the point of full platform independence,” Ould-Saada says.

Solving the interoperability challenge

Because of the distributed and diverse nature of the resources that make up the grid, interoperability is essential. A single user, for example, will often need to use resources from multiple computers with different processing speeds, running different operating systems and connected in different ways to the network and even to separate grids. The ARC system constitutes that necessary bridge, thanks in part to the KnowARC team’s use of and contributions to standards to build their middleware, including several proposed by the international Open Grid Forum (OGF).

The complex processes that provide interoperability and share grid resources are largely automatic and hidden from the user, bringing the time it takes to install, configure and use the ARC system down to a couple of hours instead of days or even weeks.

“Typically, in an academic environment, accessing the grid has been extremely complex. It involves training people to use it, obtaining permissions to use resources and installing and configuring the necessary software. With the ARC middleware much of this complexity is eliminated,” the project manager says.

Significantly, simplicity is not a handicap to performance. Of the three middleware solutions selected by the European Grid Initiative (UNICORE and gLite are the other two), Ould-Saada is confident that ARC has the most potential for wide deployment in new domains due to its ease of installation and use. He points to Nordugrid’s valuable contribution to the processing of the enormous amounts of data produced by the Large Hadron Collider at CERN in Switzerland.

“We were supposed to contribute 5 percent of the total computational resources, but in reality we have been contributing 10 percent and in some instances as much as 30 percent,” he notes.

As a result of the KnowARC team’s work and their promotional activities, the ARC middleware is also being used as the basis for grid computing solutions in a variety of fields, including medicine, bioinformatics and geographical data.

“At Geneva University Hospital, ARC helps researchers intelligently access their medical image database, which grows by more than 100,000 images per day. Also in Switzerland we work with the Swiss Multi Science Computing Grid where ARC is helping researchers build models of Alpine terrain in order to monitor changes and predict the risk of avalanches,” Ould-Saada says.

Looking ahead, the KnowARC director expects the grid and the ARC middleware to continue to evolve. He points, for example, to the emerging integration of grid computing with cloud computing in which storage as well as computational resources are distributed.

“In a matter of years, I hope to see resources and storage being as easy to access remotely as information is on the internet today,” he says.

KnowARC received funding from the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=91143

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>