Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid computing for the masses

09.02.2010
Having helped scientists study the building blocks of the universe, peer inside the human body in miniscule detail and monitor climate change, grid computing could soon be put to more mundane uses by your home or office computer.

A team of European researchers has developed middlewaredesigned to allow any computer running any operating system to simply, efficiently and cost-effectively access the distributed computers that make up the grid.

Their work promises to trigger a kind of popular revolution in which everyone will be granted access to the powerful resource-sharing technology that, until now, has largely been the preserve of academia.

“Grid computing, which allows users to access the computing resources of many different machines distributed around the world, has been invaluable to science. However, much of the business world and the general public have had few ways to use it due to the complexity of installing and configuring grid software, accessing grid networks, obtaining permissions to use resources… etc,” explains Farid Ould-Saada, a physicist at the University of Oslo, Norway.

Working in the EU-funded KnowARC project, Ould-Saada is leading a team of researchers in an effort to expand accessibility to grid resources. Their ultimate goal is to make computing power on the grid as easily accessible to everyone as information is on the internet.

“Getting access to the grid should be as simple as installing a new browser to get on the internet… only then will the survival and expansion of the grid be assured,” the KnowARC director says.

In an effort to achieve that goal, the KnowARC researchers set about improving existing Advanced Resource Connector (ARC) middleware – software designed to provide interoperability between computing systems, architectures and platforms. Originally developed by several Nordic research institutes in the Nordugrid collaboration, which is currently chaired by Ould-Saada, the next-generation ARC middleware is now being used across Europe to set up grid networks.

The software was recently selected by the European Grid Initiative Design Study (EGI_DS) as one of three key middleware solutions for a stable and sustainable European super-grid infrastructure. And, thanks to work carried out in the KnowARC project, it will soon be provided as a standard installation with the popular Debian and Fedora distributions of open source operating system Linux, giving anyone easy access to grid resources.

“Providing ARC through Linux distributions was one of the goals of the project… and we also wanted to ensure deployment on proprietary operating systems such as MS Windows and Mac OS. This has always been something of a challenge because in data-driven scientific computing Linux is the platform of choice, but we’ve reached the point of full platform independence,” Ould-Saada says.

Solving the interoperability challenge

Because of the distributed and diverse nature of the resources that make up the grid, interoperability is essential. A single user, for example, will often need to use resources from multiple computers with different processing speeds, running different operating systems and connected in different ways to the network and even to separate grids. The ARC system constitutes that necessary bridge, thanks in part to the KnowARC team’s use of and contributions to standards to build their middleware, including several proposed by the international Open Grid Forum (OGF).

The complex processes that provide interoperability and share grid resources are largely automatic and hidden from the user, bringing the time it takes to install, configure and use the ARC system down to a couple of hours instead of days or even weeks.

“Typically, in an academic environment, accessing the grid has been extremely complex. It involves training people to use it, obtaining permissions to use resources and installing and configuring the necessary software. With the ARC middleware much of this complexity is eliminated,” the project manager says.

Significantly, simplicity is not a handicap to performance. Of the three middleware solutions selected by the European Grid Initiative (UNICORE and gLite are the other two), Ould-Saada is confident that ARC has the most potential for wide deployment in new domains due to its ease of installation and use. He points to Nordugrid’s valuable contribution to the processing of the enormous amounts of data produced by the Large Hadron Collider at CERN in Switzerland.

“We were supposed to contribute 5 percent of the total computational resources, but in reality we have been contributing 10 percent and in some instances as much as 30 percent,” he notes.

As a result of the KnowARC team’s work and their promotional activities, the ARC middleware is also being used as the basis for grid computing solutions in a variety of fields, including medicine, bioinformatics and geographical data.

“At Geneva University Hospital, ARC helps researchers intelligently access their medical image database, which grows by more than 100,000 images per day. Also in Switzerland we work with the Swiss Multi Science Computing Grid where ARC is helping researchers build models of Alpine terrain in order to monitor changes and predict the risk of avalanches,” Ould-Saada says.

Looking ahead, the KnowARC director expects the grid and the ARC middleware to continue to evolve. He points, for example, to the emerging integration of grid computing with cloud computing in which storage as well as computational resources are distributed.

“In a matter of years, I hope to see resources and storage being as easy to access remotely as information is on the internet today,” he says.

KnowARC received funding from the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=91143

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>