Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene's shining light could lead to super-fast Internet

31.08.2011
Writing in the journal Nature Communications, a collaboration between the Universities of Manchester and Cambridge, which includes Nobel Prize winning scientists Professor Andre Geim and Professor Kostya Novoselov, has discovered a crucial recipe for improving characteristics of graphene devices for use as photodetectors in future high-speed optical communications.

By combining graphene with metallic nanostructures, they show a twentyfold enhancement in harvesting light by graphene, which paves the way for advances in high-speed internet and other communications.

By putting two closely-spaced metallic wires on top of graphene and shining light on this structure, researchers previously showed that this generates electric power. This simple device presents an elementary solar cell.

More importantly for applications, such graphene devices can be incredibly fast, tens and potentially hundred times faster than communication rates in the fastest internet cables, which is due to the unique nature of electrons in graphene, their high mobility and high velocity.

The major stumbling block towards practical applications for these otherwise very promising devices has so far been their low efficiency. The problem is that graphene – the thinnest material in the world – absorbs little light, approximately only 3%, with the rest going through without contributing to the electrical power.

The Manchester researchers have solved the problems by combining graphene with tiny metallic structures, specially arranged on top of graphene.

These so-called plasmonic nanostructures have dramatically enhanced the optical electric field felt by graphene and effectively concentrated light within the one-atom-thick carbon layer.

By using the plasmonic enhancement, the light-harvesting performance of graphene was boosted by twenty times, without sacrificing any of its speed. The future efficiency can be improved even further.

Dr Alexander Grigorenko, an expert in plasmonics and a leading member of the team, said: "Graphene seems a natural companion for plasmonics. We expected that plasmonic nanostructures could improve the efficiency of graphene-based devices but it has come as a pleasant surprise that the improvements can be so dramatic."

Professor Novoselov added: "The technology of graphene production matures day-by-day, which has an immediate impact both on the type of exciting physics which we find in this material, and on the feasibility and the range of possible applications.

"Many leading electronics companies consider graphene for the next generation of devices. This work certainly boosts graphene's chances even further."

Professor Andrea Ferrari, from the Cambridge Engineering Department, who lead the Cambridge effort in the collaboration, said "So far, the main focus of graphene research has been on fundamental physics and electronic devices.

"These results show its great potential in the fields of photonics and optoelectronics, where the combination of its unique optical and electronic properties with plasmonic nanostructures, can be fully exploited, even in the absence of a bandgap, in a variety of useful devices, such as solar cells and photodetectors"

Graphene is a novel two-dimensional material which can be seen as a monolayer of carbon atoms arranged in a hexagonal lattice.

It is a wonder material that possesses a large number of unique properties and is currently considered in many new technologies.

The world's thinnest material was discovered at The University of Manchester in 2004, which was acknowledged by the 2010 Nobel Prize in Physics awarded to Geim and Novoselov for their "groundbreaking experiments regarding the two-dimensional material graphene".

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>