Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Game Utilizes Human Intuition to Help Computers Solve Complex Problems

30.07.2009
New computer game prototype combines work and play to help solve a fundamental problem underlying many computer hardware design tasks.

The online logic puzzle is called FunSAT, and it could help integrated circuit designers select and arrange transistors and their connections on silicon microchips, among other applications.

Designing chip architecture for the best performance and smallest size is an exceedingly difficult task that's outsourced to computers these days. But computers simply flip through possible arrangements in their search. They lack the human capacities for intuition and visual pattern recognition that could yield a better or even optimal design. That's where FunSAT comes in.

Developed by University of Michigan computer science researchers Valeria Bertacco and Andrew DeOrio, FunSAT is designed to harness humans' abilities to strategize, visualize and understand complex systems.

"Computer games can be more than a fun diversion," said Bertacco, an associate professor in computer science and engineering. "Humans are good at playing games and they enjoy dedicating time to it. We hope that we can use their strengths to improve chip designs, databases and even robotics."

DeOrio, a doctoral student in Computer Science and Engineering, will present a paper on the research on July 30 at the Design Automation Conference in San Francisco.

A single-player prototype exists at http://funsat.eecs.umich.edu, implemented in Java by U-M undergraduate Erica Christensen. Bertacco and DeOrio are working on growing it to a multi-player game, which would allow more complicated problems to be solved.

By solving challenging problems on the FunSAT board, players can contribute to the design of complex computer systems, but you don't have to be a computer scientist to play. The game is a sort of puzzle that might appeal to Sudoku fans.

The board consists of rows and columns of green, red and gray bubbles in various sizes. Around the perimeter are buttons that players can turn yellow or blue with the click of a mouse. The buttons' color determines the color of bubbles on the board. The goal of the game is to use the perimeter buttons to toggle all the bubbles green.

Right-clicking on a bubble tells you which buttons control its color, giving the player a hint of what to do next. The larger a bubble is, the more buttons control it. The game may be challenging because each button affects many bubbles at the same time and in different ways. A button that turns several bubbles green will also turn others from green to red or gray.

The game actually unravels so-called satisfiability problems---classic and highly complicated mathematical questions that involve selecting the best arrangement of options. In such quandaries, the solver must assign a set of variables to the right true or false categories so to fulfill all the constraints of the problem.

In the game, the bubbles represent constraints. They become green when they are satisfied. The perimeter buttons represent the variables. They are assigned to true or false when players click the mouse to make them yellow (true) or blue (false).

Once the puzzle is solved and all the bubbles are green, a computer scientist could simply look at the color of each button to gather the solution of that particular problem.

Satisfiability problems arise not only in complex chip design, but in many other areas such as packing a backpack with as many items as possible, or searching for the shortest postal route to deliver mail in a neighborhood.

"When solving these problems, humans can use their intuition and visualization skills. For instance, by just glancing at the neighborhood map they can gain an intuition of where to begin in the case of the postal route," Bertacco said. "FunSAT can leverage these human skills that computer-based solvers do not have."

The paper is called "Human Computing for EDA."

For more information:

Valeria Bertacco: http://www.eecs.umich.edu/~valeria/

FunSAT: http://funsat.eecs.umich.edu

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at http://www.engin.umich.edu/.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>