Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future smart phones will project images on the wall

29.02.2012
New laser light source has a global market in consumer electronics
Mobile phones currently on the market are capable of showing high quality images and video, but the phones' small size sets insurmountable limits on screen size, and thus the viewing experience. VTT Technical Research Centre of Finland, EpiCrystals Oy and the Aalto University are developing a better laser light source for projectors that will be integrated into mobile phones, which will enable accurate and efficient projection of, for example, photographs and movies on any surface. Mobile phones equipped with the laser light source can be within the ordinary consumer's reach already in a few years time.

Small-size laser projectors 1-2 centimetres in length can be integrated into many kinds of electronic appliances, such as digital or video cameras, gaming devices and mobile phones. Integrated micro projectors could, in practice, project images the size of an A3 sheet of paper on a wall.

The challenge is to develop a small, energy-efficient and luminous three-colour (RGB) light source, whose manufacturing costs can be kept low, for use in the projectors. Solutions for these challenges are sought in a project combining Finnish know-how, whose parties are VTT, EpiCrystals Inc. and the Aalto University.

"The project has successfully combined multi-technological know-how from VTT and its partners in the project, from manufacturing materials and the accurate focusing of laser chips all the way to production line design. The project was launched last autumn, and we are now entering the stage where we can move from brainstorming and design to building prototypes. It is our goal to prove by next summer that large quantities of the new laser light sources can be manufactured quickly and economically ", says Principal Scientist Timo Aalto from VTT.

EpiCrystals Inc. aims straight for the global market with its product, and it is the company's goal to be the technology and market leader in laser light sources for micro projectors by 2015.

"We are developing an entirely new technology that is currently not in use anywhere else in the world. At the moment, there are stand-alone projectors on the market that can be connected to electronic appliances and early stage integrated projectors, but their quality and price are not competitive enough. Large electronics manufacturers are extremely interested in integrated projectors, and market research shows that demand for these micro projectors will increase strongly in the coming years. Soon, around two billion mobile phones per year will be sold in the world, and if even a couple of per cent of those contain a projector, we are talking about tens of millions of copies, and the hundred million mark is not far either", says Vice President of Business Development Tomi Jouhti of EpiCrystals Oy.

EpiCrystals’ laser modules will be mass-produced in Asia, but the research and development will remain in Finland also in the future. The VTT, EpiCrystals and Aalto University project has received funding from the Finnish Funding Agency for Technology and Innovation Tekes, among others.

EpiCrystals Inc. develops innovative laser light sources for next-generation projectors. The products patented by the company enable the manufacturing of more economical and compact projectors with superior image quality. EpiCrystals employs 24 people and its product development has been funded by Tekes and investment funds managed by VNT Management Oy and Suomen Teollisuussijoitus Oy (Finnish Industry Investment Ltd), among others.

Aalto University Department of Automation and Systems Technology

Timo Aalto | EurekAlert!
Further information:
http://www.epicrystals.com
http://www.vtt.fi

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>