Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future smart phones will project images on the wall

29.02.2012
New laser light source has a global market in consumer electronics
Mobile phones currently on the market are capable of showing high quality images and video, but the phones' small size sets insurmountable limits on screen size, and thus the viewing experience. VTT Technical Research Centre of Finland, EpiCrystals Oy and the Aalto University are developing a better laser light source for projectors that will be integrated into mobile phones, which will enable accurate and efficient projection of, for example, photographs and movies on any surface. Mobile phones equipped with the laser light source can be within the ordinary consumer's reach already in a few years time.

Small-size laser projectors 1-2 centimetres in length can be integrated into many kinds of electronic appliances, such as digital or video cameras, gaming devices and mobile phones. Integrated micro projectors could, in practice, project images the size of an A3 sheet of paper on a wall.

The challenge is to develop a small, energy-efficient and luminous three-colour (RGB) light source, whose manufacturing costs can be kept low, for use in the projectors. Solutions for these challenges are sought in a project combining Finnish know-how, whose parties are VTT, EpiCrystals Inc. and the Aalto University.

"The project has successfully combined multi-technological know-how from VTT and its partners in the project, from manufacturing materials and the accurate focusing of laser chips all the way to production line design. The project was launched last autumn, and we are now entering the stage where we can move from brainstorming and design to building prototypes. It is our goal to prove by next summer that large quantities of the new laser light sources can be manufactured quickly and economically ", says Principal Scientist Timo Aalto from VTT.

EpiCrystals Inc. aims straight for the global market with its product, and it is the company's goal to be the technology and market leader in laser light sources for micro projectors by 2015.

"We are developing an entirely new technology that is currently not in use anywhere else in the world. At the moment, there are stand-alone projectors on the market that can be connected to electronic appliances and early stage integrated projectors, but their quality and price are not competitive enough. Large electronics manufacturers are extremely interested in integrated projectors, and market research shows that demand for these micro projectors will increase strongly in the coming years. Soon, around two billion mobile phones per year will be sold in the world, and if even a couple of per cent of those contain a projector, we are talking about tens of millions of copies, and the hundred million mark is not far either", says Vice President of Business Development Tomi Jouhti of EpiCrystals Oy.

EpiCrystals’ laser modules will be mass-produced in Asia, but the research and development will remain in Finland also in the future. The VTT, EpiCrystals and Aalto University project has received funding from the Finnish Funding Agency for Technology and Innovation Tekes, among others.

EpiCrystals Inc. develops innovative laser light sources for next-generation projectors. The products patented by the company enable the manufacturing of more economical and compact projectors with superior image quality. EpiCrystals employs 24 people and its product development has been funded by Tekes and investment funds managed by VNT Management Oy and Suomen Teollisuussijoitus Oy (Finnish Industry Investment Ltd), among others.

Aalto University Department of Automation and Systems Technology

Timo Aalto | EurekAlert!
Further information:
http://www.epicrystals.com
http://www.vtt.fi

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>