Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future smart phones will project images on the wall

29.02.2012
New laser light source has a global market in consumer electronics
Mobile phones currently on the market are capable of showing high quality images and video, but the phones' small size sets insurmountable limits on screen size, and thus the viewing experience. VTT Technical Research Centre of Finland, EpiCrystals Oy and the Aalto University are developing a better laser light source for projectors that will be integrated into mobile phones, which will enable accurate and efficient projection of, for example, photographs and movies on any surface. Mobile phones equipped with the laser light source can be within the ordinary consumer's reach already in a few years time.

Small-size laser projectors 1-2 centimetres in length can be integrated into many kinds of electronic appliances, such as digital or video cameras, gaming devices and mobile phones. Integrated micro projectors could, in practice, project images the size of an A3 sheet of paper on a wall.

The challenge is to develop a small, energy-efficient and luminous three-colour (RGB) light source, whose manufacturing costs can be kept low, for use in the projectors. Solutions for these challenges are sought in a project combining Finnish know-how, whose parties are VTT, EpiCrystals Inc. and the Aalto University.

"The project has successfully combined multi-technological know-how from VTT and its partners in the project, from manufacturing materials and the accurate focusing of laser chips all the way to production line design. The project was launched last autumn, and we are now entering the stage where we can move from brainstorming and design to building prototypes. It is our goal to prove by next summer that large quantities of the new laser light sources can be manufactured quickly and economically ", says Principal Scientist Timo Aalto from VTT.

EpiCrystals Inc. aims straight for the global market with its product, and it is the company's goal to be the technology and market leader in laser light sources for micro projectors by 2015.

"We are developing an entirely new technology that is currently not in use anywhere else in the world. At the moment, there are stand-alone projectors on the market that can be connected to electronic appliances and early stage integrated projectors, but their quality and price are not competitive enough. Large electronics manufacturers are extremely interested in integrated projectors, and market research shows that demand for these micro projectors will increase strongly in the coming years. Soon, around two billion mobile phones per year will be sold in the world, and if even a couple of per cent of those contain a projector, we are talking about tens of millions of copies, and the hundred million mark is not far either", says Vice President of Business Development Tomi Jouhti of EpiCrystals Oy.

EpiCrystals’ laser modules will be mass-produced in Asia, but the research and development will remain in Finland also in the future. The VTT, EpiCrystals and Aalto University project has received funding from the Finnish Funding Agency for Technology and Innovation Tekes, among others.

EpiCrystals Inc. develops innovative laser light sources for next-generation projectors. The products patented by the company enable the manufacturing of more economical and compact projectors with superior image quality. EpiCrystals employs 24 people and its product development has been funded by Tekes and investment funds managed by VNT Management Oy and Suomen Teollisuussijoitus Oy (Finnish Industry Investment Ltd), among others.

Aalto University Department of Automation and Systems Technology

Timo Aalto | EurekAlert!
Further information:
http://www.epicrystals.com
http://www.vtt.fi

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>