Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Foundations for the World Wide Grid

The dream of using the internet to allow people to access as much computer processing and storage power as they need, when they need it, is a step closer thanks to European researchers.

Although a World Wide Grid running on top of the internet is still probably years away from being a reality, the grid, like the web before it, is starting to take shape between academic and scientific institutions.

Where the internet is a communications channel between computers, the grid goes beyond this by not just using the internet for communications but also as a means of sharing computing resources. Every computer and user can access and make use of the combined resources of the grid.

As things stand at the moment there are a series of isolated grids which allow the resources of clusters of computers, at different universities for instance, to be shared. Each of these grids is usually based on its own proprietary middleware which makes interoperability impossible. Middleware is a type of software which connects hardware resources to a grid.

There are different middlewares available, each tailored for different scientific, commercial or industrial usage.

Grid confined to experts

Another barrier to the development of the grid system is its difficulty of use, requiring as it does now knowledge of specialised computer languages and coding skills.

It is against this background that the EU-funded g-Elipse project has been developing an easy-to-use, Windows-like graphical interface which allows access to grid resources with a few mouse clicks.

Says project coordinator Mathias Stümpert: “Entering and using a grid has been too difficult for most people, so we are developing a system which allows the ordinary student to use grid resources. Until now, these have only been available to academics and scientists able to enter complicated command lines. Instead of something that takes months to learn, we are developing a graphical user interface (GUI) which can be operated by anybody with a basic knowledge of computing.”

The idea is to develop a system which is middleware independent, so a user can access any grid in exactly the same way using the same actions and commands on the GUI. The g-Eclipse system also aims to allow users to work with different grids at the same time and switch data between them.

New sort of browser

“You can think of g-Eclipse as a browser for what will become the World Wide Grid,” says Stümpert. “It searches for and displays the resources that are available, and allows the user to access them. Complicated computing jobs which need more processing or storage than are available on the user’s system can be sent to the grid. Data can be transferred from the local computer to the grid and workflows can be managed.”

The project is making use of the Eclipse open-source ecosystem, which has thousands of developers and a very large user base and is host to numerous application development projects from around the world.

“We chose Eclipse as our medium because it allows us to create a user base and it also means anybody in the world can contribute. Eclipse projects are really transparent and open, more so even than Linux, and source code can simply be reused between Eclipse programmes.”

“With support from the Eclipse Foundation we get a lot of functionality from the ecosystem and the use of a lot of infrastructure, such as software or code repositories. The project develops a life of its own which allows it to continue even after the EU funding has been spent,” Stümpert says.

Middleware-independent architecture

So far, the middleware-independent g-Eclipse core architecture has been configured to work with two brands of middleware. Initially, it was assessed using the scientific gLite middleware which is used by European scientific institutions, but plug-ins have also been developed for the GRIA middleware which is in commercial and industrial use.

The system has also been configured for use with computing clouds, and specifically’s Elastic Compute Cloud. Cloud computing allows firms which have installed computer capacity to cope with peak periods, such as Christmas, to hire the excess capacity out.

Site administrators expecting unusually heavy traffic can lease tens, hundreds or even thousands of virtual servers from firms like Amazon, for minutes, hours or days at a time as and when the extra capacity is required.

While other GUIs have been developed for this purpose, g-Eclipse is currently the only one allowing data to be transferred between the “real” world of grids and the virtual world of clouds.

Supporting other developers

“We are not just supporting the individual user, although we do already have a lot of new users sending their daily jobs to the grid, but also a framework that can be used for other developers to build their applications on.” says Stümpert.

His hope is that the Eclipse community, having seen the value of the work to date, will continue to push back the boundaries with other developers plugging g-Eclipse into all the grids and clouds which connect to the internet.

“While at this early stage our users are mainly students, a few years down the road g-Eclipse could be a part of everybody’s desktop. Perhaps there will be a layer in computer operating systems which allows applications to be executed on the grid rather than the local desktop.”

If and when that happens, every PC user could well have access to all of the computing power and speed they could possibly require.

g-Eclipse was funded by the ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>