Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foundations for the World Wide Grid

21.11.2008
The dream of using the internet to allow people to access as much computer processing and storage power as they need, when they need it, is a step closer thanks to European researchers.

Although a World Wide Grid running on top of the internet is still probably years away from being a reality, the grid, like the web before it, is starting to take shape between academic and scientific institutions.

Where the internet is a communications channel between computers, the grid goes beyond this by not just using the internet for communications but also as a means of sharing computing resources. Every computer and user can access and make use of the combined resources of the grid.

As things stand at the moment there are a series of isolated grids which allow the resources of clusters of computers, at different universities for instance, to be shared. Each of these grids is usually based on its own proprietary middleware which makes interoperability impossible. Middleware is a type of software which connects hardware resources to a grid.

There are different middlewares available, each tailored for different scientific, commercial or industrial usage.

Grid confined to experts

Another barrier to the development of the grid system is its difficulty of use, requiring as it does now knowledge of specialised computer languages and coding skills.

It is against this background that the EU-funded g-Elipse project has been developing an easy-to-use, Windows-like graphical interface which allows access to grid resources with a few mouse clicks.

Says project coordinator Mathias Stümpert: “Entering and using a grid has been too difficult for most people, so we are developing a system which allows the ordinary student to use grid resources. Until now, these have only been available to academics and scientists able to enter complicated command lines. Instead of something that takes months to learn, we are developing a graphical user interface (GUI) which can be operated by anybody with a basic knowledge of computing.”

The idea is to develop a system which is middleware independent, so a user can access any grid in exactly the same way using the same actions and commands on the GUI. The g-Eclipse system also aims to allow users to work with different grids at the same time and switch data between them.

New sort of browser

“You can think of g-Eclipse as a browser for what will become the World Wide Grid,” says Stümpert. “It searches for and displays the resources that are available, and allows the user to access them. Complicated computing jobs which need more processing or storage than are available on the user’s system can be sent to the grid. Data can be transferred from the local computer to the grid and workflows can be managed.”

The project is making use of the Eclipse open-source ecosystem, which has thousands of developers and a very large user base and is host to numerous application development projects from around the world.

“We chose Eclipse as our medium because it allows us to create a user base and it also means anybody in the world can contribute. Eclipse projects are really transparent and open, more so even than Linux, and source code can simply be reused between Eclipse programmes.”

“With support from the Eclipse Foundation we get a lot of functionality from the ecosystem and the use of a lot of infrastructure, such as software or code repositories. The project develops a life of its own which allows it to continue even after the EU funding has been spent,” Stümpert says.

Middleware-independent architecture

So far, the middleware-independent g-Eclipse core architecture has been configured to work with two brands of middleware. Initially, it was assessed using the scientific gLite middleware which is used by European scientific institutions, but plug-ins have also been developed for the GRIA middleware which is in commercial and industrial use.

The system has also been configured for use with computing clouds, and specifically Amazon.com’s Elastic Compute Cloud. Cloud computing allows firms which have installed computer capacity to cope with peak periods, such as Christmas, to hire the excess capacity out.

Site administrators expecting unusually heavy traffic can lease tens, hundreds or even thousands of virtual servers from firms like Amazon, for minutes, hours or days at a time as and when the extra capacity is required.

While other GUIs have been developed for this purpose, g-Eclipse is currently the only one allowing data to be transferred between the “real” world of grids and the virtual world of clouds.

Supporting other developers

“We are not just supporting the individual user, although we do already have a lot of new users sending their daily jobs to the grid, but also a framework that can be used for other developers to build their applications on.” says Stümpert.

His hope is that the Eclipse community, having seen the value of the work to date, will continue to push back the boundaries with other developers plugging g-Eclipse into all the grids and clouds which connect to the internet.

“While at this early stage our users are mainly students, a few years down the road g-Eclipse could be a part of everybody’s desktop. Perhaps there will be a layer in computer operating systems which allows applications to be executed on the grid rather than the local desktop.”

If and when that happens, every PC user could well have access to all of the computing power and speed they could possibly require.

g-Eclipse was funded by the ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90191

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>