Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU project “AutoTune” started

18.01.2012
An international consortium of scientific institutions and industrial companies coordinated by Technische Universität München recently started the European project “Automatic Online Tuning” (AutoTune) with the target of automatically optimizing applications in the area of high-performance computing. The Leibniz Supercomputing Centre of the Bavarian Academy of Sciences is partner in the project and responsible for the contacts to the public.

Supercomputers, like the ones made available to scientists within PRACE (Partnership for Advanced Computing in Europe), which provide computing power in the petaflops range, are very expensive research resources. Therefore, the available processing time and energy should be used efficiently.

This requires a continuous search for optimization potential in programming parallel architectures based on either multi-core processors, many-core processors or even general purpose graphics processing units (GPGPUs). While performance analysis tools exist to help the developers detect bottlenecks, these tools do not give any recommendations on how to subsequently tune the code.

A solution for this problem will become available through the AutoTune project. AutoTune will extend the performance analysis tool “Periscope”, an automatic online and distributed performance analysis tool developed by Technische Universität München (TUM), with automatic online tuning plugins for performance and energy efficiency tuning.

AutoTune is coordinated by TUM and has a budget of approximately three million Euros. It will be funded by the European Commission with about two million Euros. The project started mid of October 2011 and will run for three years. In addition to TUM, the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences, CAPS entreprise, the Universitat Autònoma de Barcelona (UAB), the Centre for High-End Computing (ICHEC) at the University of Galway as well as the University of Vienna are partners in the project. IBM is an associated partner.

The expertise of this consortium covers all relevant areas. TUM developed the automatic performance analysis tool Periscope. The University of Vienna brings in their expertise in language, compiler and runtime techniques for efficient programming of GPGPU-accelerated architectures. CAPS entreprise is developing HMPP (Hybrid Multicore Parallel Programming), an easy-to-use directive-based programming interface for GPGPU. UAB developed the MATE (Monitoring, Analysis and Tuning Environment) framework for tuning pattern-based parallel applications. The LRZ delivers extensive experience with application tuning and will work together with IBM on energy efficiency tuning. IBM will provide extensions to its Load Leveler for LRZ‘s next petascale system named SuperMUC. ICHEC is especially experienced in the area of GPGPU programming and will bring in their application knowledge.

Contact:
Dr. Wolfram Hesse, Leibniz Supercomputing Centre
Phone: +49 89 35831-8845, E-Mail: Wolfram.Hesse@lrz.de
The Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities in Garching near Munich, Germany, is the IT service provider for the universities in the Munich area. LRZ operates the Munich Scientific Network (MWN), archiving and backup systems, high performance computers and one of Germany’s national supercomputers as part of the Gauss Centre for Supercomputing (GCS).

Dr. Ellen Latzin | idw
Further information:
http://www.autotune-project.eu/

Further reports about: AutoTune Bavarian Caps GPGPU LRZ Leibniz Pervasive Computing Supercomputing TUM energy efficiency

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>