Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital avalanche rescue dog

10.12.2009
A novel geolocation system makes use of signals from Galileo, the future European satellite navigation system, to locate avalanche victims carrying an avalanche transceiver or a cellphone, to the precision of a few centimeters.

For many skiers and snowboarders, there is nothing quite like being the first to make tracks in the virgin snow, off the regular piste. But this can be a fateful decision, because the risk of avalanche is many times greater here.

Once buried under a mass of snow, a person’s only hope of survival is if their location can be pinpointed swiftly. If not rescued within half an hour, their chances of being found alive diminish rapidly. Victims stand the best chance of being saved if the uninjured members of their group start searching for them immediately – but for that the buried victim needs to be wearing an avalanche beacon.

“In the experience of rescue teams not everyone actually carrys beacons,” says Wolfgang Inninger of the Fraunhofer Institute for Material Flow and Logistics IML. “However, nearly everyone has a cellphone. This is why we decided to enhance our automatic geolocation system that works with Galileo, the future European satellite navigation system.” To do so, two new components have been added to the ‘avalanche rescue navigator’ ARN: a cellphone location function and software that calculates the position of the buried victim on the basis of local measurements. Starting from the approximate place where the victim is thought to be lying under the snow, the rescuers measure the field strength of the signal transmitted by the cellphone or beacon at three to five reference points.

The system then uses a highly precise calculation algorithm to pinpoint the source of the signal, indicating with high probability the location of the buried victim. In this kind of situation, the position relative to the rescue team’s starting point is more important than the absolute position relative to global coordinates, which may be subject to measurement inaccuracies. This gives the rescuers immediate information on the direction and distance from their present location at which the victim can be found.

For their development work on the system, the researchers are using the GATE Galileo test and development environment in Berchtesgaden, where transmitter antennas installed on six mountain peaks simulate the Galileo signals. The researchers intend to combine these signals – and the real ones, after 2012 – with signals from existing satellite navigation systems such as the American GPS and the Russian Glonass, and to add signals for error estimation and correction. The project is being implemented by a consortium of regional companies, institutes and universities in collaboration with the Berchtesgaden mountain rescue service and the police, and is being sponsored by the German Aerospace Center DLR.

Wolfgang Inninger | EurekAlert!
Further information:
http://www.iml.fraunhofer.de

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>