Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Ants Protect Computer Networks

01.06.2011
As the nation's electrical power grid becomes more interconnected through the Internet -- from the nuclear power plant in California to transmission lines in Texas to the microwave in your kitchen -- the chances of cyber attacks increase as well.

Errin Fulp, a professor of computer science at Wake Forest University, is training an army of "digital ants" to turn loose into the power grid to seek out computer viruses trying to wreak havoc on the system.

If the approach proves successful in safeguarding the power grid, it could have wide-ranging applications on protecting anything connected to SCADA (Supervisory Control and Data Acquisition) networks, computer systems that control everything from water and sewer management systems to mass transit systems to manufacturing systems.

Fulp is working this summer with scientists at Pacific Northwest National Laboratory (PNNL) in Richland, Wash., on the next steps in the digital ants technology, developed by PNNL and Wake Forest over the last several years. The approach is so promising that it was named one of the "ten technologies that have the power to change our lives," by Scientific American magazine last year.

The power grid is probably more vulnerable to cyber attacks than security experts would like to admit, said Fulp, an expert in security and computer networks. As the grid becomes more and more interconnected, it offers hackers more points to enter the system; for instance, inserting a virus or computer worm into a low security site, such as in your home's smart grid, to gain access to more secure systems up the line.

"When that network connects to a power source, which connects to the smart grid, you have a jumping off point" for computer viruses, he said. "A cyber attack can have a real physical result of shutting off power to a city or a nuclear power plant."

The digital ants technology could transform cyber security because it adapts rapidly to changing threats, said Fulp, who has received nearly $250,0000 in grants from PNNL/Battelle Memorial Institute for his ongoing research.

Unlike traditional security approaches, which are static, digital ants wander through computer networks looking for threats such as computer worms, self-replicating programs designed to steal information or facilitate unauthorized use of computers. When a digital ant detects a threat, it summons an army of ants to converge at that location, drawing the attention of human operators to investigate.

"The idea is to deploy thousands of different types of digital ants, each looking for evidence of a threat," Fulp said. "As they move about the network, they leave digital trails modeled after the scent trails ants in nature use to guide other ants. Each time a digital ant identifies some evidence, it is programmed to leave behind a stronger scent. Stronger scent trails attract more ants, producing the swarm that marks a potential computer infection."

The concept has proven successful in testing on a small scale, but will it still work when it's scaled up to protect something as large and complex as the nation's power grid? Fulp and two of his students -- computer science graduate students Michael Crouse and Jacob White -- are working this summer with scientists at PNNL and from the University of California at Davis to answer that question. But even using PNNL's vast computer platforms, they can only rely on computer simulations to predict the ants' "behavior" up to a point.

That's where Fulp’s colleague, Ken Berenhaut, an associate professor of mathematics at Wake Forest and an expert in mathematical modeling and simulation, comes in. Berenhaut, along with Wake Forest graduate student Ross Hilton, will use modeling to help determine what will happen as the ants move about the smart grid from the hot water heater in your house to the electrical substation to the power plant.

Among the questions to be answered: How do the ants migrate across different computer platforms and systems operating at different speeds? How many ants should you have patrolling a system? How long do they live? How do the ants scale up to identify a threat and then ramp back down?

"In nature, we know that ants defend against threats very successfully," Fulp said. "They can ramp up their defense rapidly, and then resume routine behavior quickly after an intruder has been stopped. We're trying to achieve that same framework in a computer system."

PNNL, a Department of Energy laboratory, conducts cutting-edge research in cyber security. Glenn Fink, a senior research scientist at PNNL, first came up with the idea of copying ant behavior for computer security. He was familiar with Fulp's work developing faster computer scans using parallel processing -- dividing computer data into batches like lines of shoppers going through grocery store checkouts, where each lane is focused on certain threats -- and invited him to join the project several years ago.

Brett D. Eaton | Newswise Science News
Further information:
http://www.wfu.edu

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>