Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Ants Protect Computer Networks

01.06.2011
As the nation's electrical power grid becomes more interconnected through the Internet -- from the nuclear power plant in California to transmission lines in Texas to the microwave in your kitchen -- the chances of cyber attacks increase as well.

Errin Fulp, a professor of computer science at Wake Forest University, is training an army of "digital ants" to turn loose into the power grid to seek out computer viruses trying to wreak havoc on the system.

If the approach proves successful in safeguarding the power grid, it could have wide-ranging applications on protecting anything connected to SCADA (Supervisory Control and Data Acquisition) networks, computer systems that control everything from water and sewer management systems to mass transit systems to manufacturing systems.

Fulp is working this summer with scientists at Pacific Northwest National Laboratory (PNNL) in Richland, Wash., on the next steps in the digital ants technology, developed by PNNL and Wake Forest over the last several years. The approach is so promising that it was named one of the "ten technologies that have the power to change our lives," by Scientific American magazine last year.

The power grid is probably more vulnerable to cyber attacks than security experts would like to admit, said Fulp, an expert in security and computer networks. As the grid becomes more and more interconnected, it offers hackers more points to enter the system; for instance, inserting a virus or computer worm into a low security site, such as in your home's smart grid, to gain access to more secure systems up the line.

"When that network connects to a power source, which connects to the smart grid, you have a jumping off point" for computer viruses, he said. "A cyber attack can have a real physical result of shutting off power to a city or a nuclear power plant."

The digital ants technology could transform cyber security because it adapts rapidly to changing threats, said Fulp, who has received nearly $250,0000 in grants from PNNL/Battelle Memorial Institute for his ongoing research.

Unlike traditional security approaches, which are static, digital ants wander through computer networks looking for threats such as computer worms, self-replicating programs designed to steal information or facilitate unauthorized use of computers. When a digital ant detects a threat, it summons an army of ants to converge at that location, drawing the attention of human operators to investigate.

"The idea is to deploy thousands of different types of digital ants, each looking for evidence of a threat," Fulp said. "As they move about the network, they leave digital trails modeled after the scent trails ants in nature use to guide other ants. Each time a digital ant identifies some evidence, it is programmed to leave behind a stronger scent. Stronger scent trails attract more ants, producing the swarm that marks a potential computer infection."

The concept has proven successful in testing on a small scale, but will it still work when it's scaled up to protect something as large and complex as the nation's power grid? Fulp and two of his students -- computer science graduate students Michael Crouse and Jacob White -- are working this summer with scientists at PNNL and from the University of California at Davis to answer that question. But even using PNNL's vast computer platforms, they can only rely on computer simulations to predict the ants' "behavior" up to a point.

That's where Fulp’s colleague, Ken Berenhaut, an associate professor of mathematics at Wake Forest and an expert in mathematical modeling and simulation, comes in. Berenhaut, along with Wake Forest graduate student Ross Hilton, will use modeling to help determine what will happen as the ants move about the smart grid from the hot water heater in your house to the electrical substation to the power plant.

Among the questions to be answered: How do the ants migrate across different computer platforms and systems operating at different speeds? How many ants should you have patrolling a system? How long do they live? How do the ants scale up to identify a threat and then ramp back down?

"In nature, we know that ants defend against threats very successfully," Fulp said. "They can ramp up their defense rapidly, and then resume routine behavior quickly after an intruder has been stopped. We're trying to achieve that same framework in a computer system."

PNNL, a Department of Energy laboratory, conducts cutting-edge research in cyber security. Glenn Fink, a senior research scientist at PNNL, first came up with the idea of copying ant behavior for computer security. He was familiar with Fulp's work developing faster computer scans using parallel processing -- dividing computer data into batches like lines of shoppers going through grocery store checkouts, where each lane is focused on certain threats -- and invited him to join the project several years ago.

Brett D. Eaton | Newswise Science News
Further information:
http://www.wfu.edu

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>