Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DFG approves new research center for the development of novel methods in soft matter simulations

30.05.2014

Mainz University coordinates new CRC/Transregio "Multiscale Simulation Methods for Soft-Matter Systems" with the Technical University of Darmstadt and the Max Planck Institute for Polymer Research

The German Research Foundation (DFG) has approved the establishment of a new collaborative research center (CRC) to be coordinated by Johannes Gutenberg University Mainz (JGU). The new CRC/Transregio "Multiscale Simulation Methods for Soft-Matter Systems" will focus on method development for computer-aided research on structural properties and processes of soft matter.

Collaborative research centers are long-term DFG projects in fundamental research; CRC/Transregio projects are special in that their application must be submitted by several universities and/or institutions jointly. In addition to Mainz University as coordinator, the Technical University of Darmstadt and the Max Planck Institute for Polymer Research in Mainz will also be participating in the new CRC/Transregio. The German Research Foundation will fund the CRC/Transregio with about EUR 7 million over the next four years.

"The successful application for the new DFG-funded CRC/Transregio serves as an example of the fruitful collaboration of Mainz University, the Max Planck Institute for Polymer Research, and the Technical University of Darmstadt. These institutions have only just confirmed their intent by signing a cooperation agreement. This new research-related achievement demonstrates the exceptional potential of the Rhine-Main scientific hub and again underlines the excellence of the work being undertaken by our researchers in the field of materials science, which is – with good reason – one of the main disciplines shaping JGU’s research profile," said Minister of Science Doris Ahnen.

... more about:
»CRC »DFG »Polymer »Simulation »Transregio »materials »properties

"At Mainz University, the new CRC/Transregio will combine research activities from the fields of mathematical modeling and soft matter. JGU’s Center for Computational Sciences in Mainz will be providing valuable support, proving once again how important this field is for innovative scientific research at our university," explained Professor Georg Krausch, President of Johannes Gutenberg University Mainz.

The work at the new CRC/Transregio will concentrate on multiscale modeling, a core aspect of materials science research. Soft matter represents an important class of materials that ranges from simple plastics to complex biomolecular systems and materials used in organic electronics applications. Their properties are determined by a subtle interplay of energy and entropy.

Small changes in molecular interactions can lead to large changes in the macroscopic properties of a system. The CRC/Transregio 146 "Multiscale Simulation Methods for Soft-Matter Systems" will bring together physicists, chemists, applied mathematicians, and computer scientists in order to address some of the most pressing problems of multiscale modeling. The aim is to develop new simulation and analytical techniques that allow for the simulation of complex systems in the 'real world,' such as materials composed of many components and non-equilibrium processes in materials.

The Center for Computational Sciences in Mainz was established at JGU in 2007 in order to further promote the outstanding profile of the natural sciences in Mainz by developing innovative mathematical models and powerful computer simulation techniques. Among other things, the high-performance computer MOGON is available to researchers. The acquirement of the new MOGON II system was recently approved and should be operational by the first quarter of 2016. As MOGON I in 2012, it is expected that MOGON II will rank among the top 100 of the fastest high-performance computers worldwide.

Weitere Informationen:

http://www.dfg.de/en/service/press/press_releases/2014/press_release_no_19/index... - press release “DFG Establishes 13 New Collaborative Research Centres” ;
http://www.uni-mainz.de/presse/17279_ENG_HTML.php - press release “EUR 8.7 million for new MOGON II high-performance computer at Johannes Gutenberg University Mainz”

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: CRC DFG Polymer Simulation Transregio materials properties

More articles from Information Technology:

nachricht New movie screen allows for glasses-free 3-D
26.07.2016 | Massachusetts Institute of Technology, CSAIL

nachricht Hey robot, shimmy like a centipede
22.07.2016 | Kyoto University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>