Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DFG approves new research center for the development of novel methods in soft matter simulations

30.05.2014

Mainz University coordinates new CRC/Transregio "Multiscale Simulation Methods for Soft-Matter Systems" with the Technical University of Darmstadt and the Max Planck Institute for Polymer Research

The German Research Foundation (DFG) has approved the establishment of a new collaborative research center (CRC) to be coordinated by Johannes Gutenberg University Mainz (JGU). The new CRC/Transregio "Multiscale Simulation Methods for Soft-Matter Systems" will focus on method development for computer-aided research on structural properties and processes of soft matter.

Collaborative research centers are long-term DFG projects in fundamental research; CRC/Transregio projects are special in that their application must be submitted by several universities and/or institutions jointly. In addition to Mainz University as coordinator, the Technical University of Darmstadt and the Max Planck Institute for Polymer Research in Mainz will also be participating in the new CRC/Transregio. The German Research Foundation will fund the CRC/Transregio with about EUR 7 million over the next four years.

"The successful application for the new DFG-funded CRC/Transregio serves as an example of the fruitful collaboration of Mainz University, the Max Planck Institute for Polymer Research, and the Technical University of Darmstadt. These institutions have only just confirmed their intent by signing a cooperation agreement. This new research-related achievement demonstrates the exceptional potential of the Rhine-Main scientific hub and again underlines the excellence of the work being undertaken by our researchers in the field of materials science, which is – with good reason – one of the main disciplines shaping JGU’s research profile," said Minister of Science Doris Ahnen.

... more about:
»CRC »DFG »Polymer »Simulation »Transregio »materials »properties

"At Mainz University, the new CRC/Transregio will combine research activities from the fields of mathematical modeling and soft matter. JGU’s Center for Computational Sciences in Mainz will be providing valuable support, proving once again how important this field is for innovative scientific research at our university," explained Professor Georg Krausch, President of Johannes Gutenberg University Mainz.

The work at the new CRC/Transregio will concentrate on multiscale modeling, a core aspect of materials science research. Soft matter represents an important class of materials that ranges from simple plastics to complex biomolecular systems and materials used in organic electronics applications. Their properties are determined by a subtle interplay of energy and entropy.

Small changes in molecular interactions can lead to large changes in the macroscopic properties of a system. The CRC/Transregio 146 "Multiscale Simulation Methods for Soft-Matter Systems" will bring together physicists, chemists, applied mathematicians, and computer scientists in order to address some of the most pressing problems of multiscale modeling. The aim is to develop new simulation and analytical techniques that allow for the simulation of complex systems in the 'real world,' such as materials composed of many components and non-equilibrium processes in materials.

The Center for Computational Sciences in Mainz was established at JGU in 2007 in order to further promote the outstanding profile of the natural sciences in Mainz by developing innovative mathematical models and powerful computer simulation techniques. Among other things, the high-performance computer MOGON is available to researchers. The acquirement of the new MOGON II system was recently approved and should be operational by the first quarter of 2016. As MOGON I in 2012, it is expected that MOGON II will rank among the top 100 of the fastest high-performance computers worldwide.

Weitere Informationen:

http://www.dfg.de/en/service/press/press_releases/2014/press_release_no_19/index... - press release “DFG Establishes 13 New Collaborative Research Centres” ;
http://www.uni-mainz.de/presse/17279_ENG_HTML.php - press release “EUR 8.7 million for new MOGON II high-performance computer at Johannes Gutenberg University Mainz”

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: CRC DFG Polymer Simulation Transregio materials properties

More articles from Information Technology:

nachricht Magnetic fields provide a new way to communicate wirelessly
01.09.2015 | University of California - San Diego

nachricht 'Magic' sphere for information transfer
24.08.2015 | Lomonosov Moscow State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>