Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data storage: Coupled duo

Systematic study of the switching behavior in differential dual spin valves reveals the role of interlayer couplings

Spin valves are essential building blocks in the magnetic sensors of read heads in hard disk drives. They consist of two magnetic layers separated by a non-magnetic layer and act as valves for electrons depending on the relative alignment of the magnetization (spin) in the magnetic layers.

With the continuous push to boost the storage density of disk drives, it has become increasingly important to shield each individual sensor from the magnetic flux of adjacent bits. However, the current approach of placing the read sensor between two magnetic shields limits the resolution with which information can be packed.

To circumvent this issue, a read sensor using a 'differential dual spin valve' (DDSV) was previously proposed by Guchang Han and co-workers at the A*STAR Data Storage Institute. Based on two spin valves separated by a gap layer, it is not influenced by uniform magnetic fields (unlike single spin valve read sensors) but on field gradients. As Han explains, the packing resolution is thereby no longer limited by the magnetic shield-to-shield spacing, but by the thickness of the two active layers in the spin valves (called free layers) and the gap layer separating them.

In a significant step in understanding how the reading performance of DDSVs is affected by further downscaling of the device dimensions, Han and his colleagues have now systematically studied the magnetic interactions between the free layers as a function of their thicknesses as well as the gap layer material and thickness1.

“There are mainly two types of interlayer interactions between the two free layers,” says Han. One is a magnetostatic interaction, which propagates along the edges of the device. The other is mediated through the gap layer by either free electrons (the so-called RKKY interaction) or magnetic poles formed at the rough interfaces between the gap and free layers (Néel coupling).

While the Néel coupling is always ferromagnetic, thus favoring parallel alignment of the magnetizations in the free layers, the RKKY interaction can be either ferro- or antiferromagnetic , depending on the gap layer thickness and material. “From a DDSV working principle, it is desirable to have the two free layers couple antiferromagnetically,” notes Han.

For patterned DDSV samples, the researchers showed that the magnetostatic edge coupling dominates the switching behavior. In contrast, for thin-film samples, it is governed by a competition between the RKKY and Néel coupling, which can be controlled by the appropriate choice of gap material and thickness on the nanoscale.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute


Han, G. C., Wang, C. C., Qiu, J. J., Luo, P. & Ko, V. Interlayer couplings in a differential dual spin valve. Applied Physics Letters 98, 192502 (2011).

Lee Swee Heng | Research asia research news
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>