Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Coupled duo

12.12.2011
Systematic study of the switching behavior in differential dual spin valves reveals the role of interlayer couplings

Spin valves are essential building blocks in the magnetic sensors of read heads in hard disk drives. They consist of two magnetic layers separated by a non-magnetic layer and act as valves for electrons depending on the relative alignment of the magnetization (spin) in the magnetic layers.

With the continuous push to boost the storage density of disk drives, it has become increasingly important to shield each individual sensor from the magnetic flux of adjacent bits. However, the current approach of placing the read sensor between two magnetic shields limits the resolution with which information can be packed.

To circumvent this issue, a read sensor using a 'differential dual spin valve' (DDSV) was previously proposed by Guchang Han and co-workers at the A*STAR Data Storage Institute. Based on two spin valves separated by a gap layer, it is not influenced by uniform magnetic fields (unlike single spin valve read sensors) but on field gradients. As Han explains, the packing resolution is thereby no longer limited by the magnetic shield-to-shield spacing, but by the thickness of the two active layers in the spin valves (called free layers) and the gap layer separating them.

In a significant step in understanding how the reading performance of DDSVs is affected by further downscaling of the device dimensions, Han and his colleagues have now systematically studied the magnetic interactions between the free layers as a function of their thicknesses as well as the gap layer material and thickness1.

“There are mainly two types of interlayer interactions between the two free layers,” says Han. One is a magnetostatic interaction, which propagates along the edges of the device. The other is mediated through the gap layer by either free electrons (the so-called RKKY interaction) or magnetic poles formed at the rough interfaces between the gap and free layers (Néel coupling).

While the Néel coupling is always ferromagnetic, thus favoring parallel alignment of the magnetizations in the free layers, the RKKY interaction can be either ferro- or antiferromagnetic , depending on the gap layer thickness and material. “From a DDSV working principle, it is desirable to have the two free layers couple antiferromagnetically,” notes Han.

For patterned DDSV samples, the researchers showed that the magnetostatic edge coupling dominates the switching behavior. In contrast, for thin-film samples, it is governed by a competition between the RKKY and Néel coupling, which can be controlled by the appropriate choice of gap material and thickness on the nanoscale.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Reference

Han, G. C., Wang, C. C., Qiu, J. J., Luo, P. & Ko, V. Interlayer couplings in a differential dual spin valve. Applied Physics Letters 98, 192502 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>