Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cybersecurity Experts Begin Investigation on Self-Adapting Computer Network That Defends Itself Against Hackers

14.05.2012
In the online struggle for network security, Kansas State University cybersecurity experts are adding an ally to the security force: the computer network itself.

Scott DeLoach, professor of computing and information sciences, and Xinming "Simon" Ou, associate professor of computing and information sciences, are researching the feasibility of building a computer network that could protect itself against online attackers by automatically changing its setup and configuration.

DeLoach and Ou were recently awarded a five-year grant of more than $1 million from the Air Force Office of Scientific Research to fund the study "Understanding and quantifying the impact of moving target defenses on computer networks." The study, which began in April, will be the first to document whether this type of adaptive cybersecurity, called moving-target defense, can be effective. If it can work, researchers will determine if the benefits of creating a moving-target defense system outweigh the overhead and resources needed to build it.

Helping Ou and DeLoach in their investigation and research are Kansas State University students Rui Zhuang and Su Zhang, both doctoral candidates in computing and information sciences from China, and Alexandru Bardas, doctoral student in computing and information sciences from Romania.

As the study progresses the computer scientists will develop a set of analytical models to determine the effectiveness of a moving-target defense system. They will also create a proof-of-concept system as a way to experiment with the idea in a concrete setting.

"It's important to investigate any scientific evidence that shows that this approach does work so it can be fully researched and developed," DeLoach said. He started collaborating with Ou to apply intelligent adaptive techniques to cybersecurity several years ago after a conversation at a university open house.

The term moving-target defense -- a subarea of adaptive security in the cybersecurity field -- was first coined around 2008, although similar concepts have been proposed and studied since the early 2000s. The idea behind moving-target defense in the context of computer networks is to create a computer network that is no longer static in its configuration. Instead, as a way to thwart cyber attackers, the network automatically and periodically randomizes its configuration through various methods -- such as changing the addresses of software applications on the network; switching between instances of the applications; and changing the location of critical system data.

Ou and DeLoach said the key is to make the network appear to an attacker that it is changing chaotically while to an authorized user the system operates normally.

"If you have a Web server, pretty much anybody in the world can figure out where you are and what software you're running," DeLoach said. "If they know that, they can figure out what vulnerabilities you have. In a typical scenario, attackers scan your system and find out everything they can about your server configuration and what security holes it has. Then they select the best time for them to attack and exploit those security holes in order to do the most damage. This could change that."

Creating a computer network that could automatically detect and defend itself against cyber attacks would substantially increase the security of online data for universities, government departments, corporations and businesses -- all of which have been the targets of large-scale cyber attacks.

In February 2011 it was discovered that the Nasdaq Stock Market's computer network had been infiltrated by hackers. Although federal investigators concluded that it was unlikely the hackers stole any information, the network's security had been left vulnerable for more than a year while the hackers visited it numerous times.

According to Ou, creating a moving-target defense system would shift the power imbalance that currently resides with hackers -- who need only find a single security hole to exploit -- back to the network administrators -- who would have a system that frequently removes whatever security privileges attackers may gain with a new clean slate.

"This is a game-changing idea in cybersecurity," Ou said. "People feel that we are currently losing against online attackers. In order to fundamentally change the cybersecurity landscape and reduce that high risk we need some big, fundamental changes to the way computers and networks are constructed and organized."

A related story about how this cybersecurity model may benefit a new cloud-based network for businesses can be read at http://bit.ly/ID4z9F.

Scott DeLoach, 785-532-6350, sdeloach@k-state.edu;
and Xinming "Simon" Ou, 785-532-6350, xou@k-state.edu

Scott DeLoach | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>